OP-A-14

ANALYSIS OF BLOOD LNCRNA EXPRESSION PROFILES IN TYPE 2 DIABETES INDIVIDUALS WITH DYSLIPIDEMIA

https://doi.org/10.15605/jafes.036.S14

Siti Aishah Sulaiman, Nurruzanna Ismail, Vicneswarry Dorairaj, Nor Azian Abdul Murad

UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia

INTRODUCTION

Long noncoding RNAs (lncRNAs) are large RNA transcripts present in the blood without protein-coding capacity, with specific expression profiles for type 2 diabetes (T2D) and other conditions such as dyslipidemia (DLP). The objective of this study was to identify blood lncRNAs associated with well- and poorly-controlled T2D with DLP.

METHODOLOGY

Previous data of the T2D studies (GSE156993 and GSE15932) were retrieved from the NCBI GEOdatasets website and reanalyzed for the differential lncRNA expression for these groups: (1) healthy controls (CON, n=14), (2) T2D well-controlled without DLP (T2D, n=8), (3) DLP without T2D (DLP, n=6), (4) T2D well-controlled with DLP (T2D-DLPW, n=6), and (5) T2D poorly-controlled with DLP (T2D-DLPP, n=6). MicroRNAs predicted to bind to the significant lncRNAs (miRNet) were determined and continued with biological pathway analyses (KEGG).

RESULTS

The first two comparisons (T2D/CON and DLP/CON) resulted in 33 dysregulated lncRNAs [-1.5<log2 Fold Change (log2FC) >1.5, adjusted p-value<0.05. Among these, seven lncRNAs were specific to T2D, and nine specific to DLP. Another three comparisons (T2D-DLPW/T2D, T2D-DLPP/T2D and T2D-DLPP/T2D-DLPW) resulted in 308 dysregulated lncRNAs. From these, 37 were specific to T2D-DLPP and 87 specific to T2D-DLPW. Two lncRNAs, XIST and LINC01857, were upregulated only in T2D-DLPP compared to T2D (log2FC=5.86, adjusted p-value=0.002 and log2FC=1.73, adjusted p-value<0.001, respectively) and T2D-DLPW (log2FC=3.71, adjusted p-value=0.037 and log2FC=2.50, adjusted p-value=0.022, respectively). The biological pathway analyses showed that lncRNA XIST and LINC01857 might be involved in insulin resistance, apoptosis and inflammation pathways. Both lncRNAs are predicted to interact with miR-146b-5p, found to be associated with HbA1C level.

CONCLUSION

Blood lncRNA XIST and LINC01857 may be involved in poor glucose control of T2D with DLP.