Interrelationship of Sarcopenia and Cardiovascular Diseases

A Review of Potential Mechanisms and Management

Authors

  • Frederick Berro Rivera Lincoln Medical Center, New York (NY), USA https://orcid.org/0000-0001-9100-0724
  • Bettina Therese Escolano Ateneo de Manila School of Medicine and Public Health, Pasig City, Philippines https://orcid.org/0000-0003-1549-0965
  • Frances Micole Nifas Ateneo de Manila School of Medicine and Public Health, Pasig City, Philippines https://orcid.org/0009-0008-7918-3853
  • Sarang Choi Ateneo de Manila School of Medicine and Public Health, Pasig City, Philippines https://orcid.org/0009-0003-4852-9405
  • Genquen Philip Carado University of the East Ramon Magsaysay Memorial Medical Center, Philippines https://orcid.org/0000-0001-6793-8114
  • Edgar Lerma University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
  • Krishnaswami Vijayaraghavan University of Arizona, Phoenix, Arizona, USA
  • Marc Gregory Yu Joslin Diabetes Center and Harvard Medical School, Boston, USA https://orcid.org/0000-0002-0376-9574

Keywords:

Sarcopenia, Cardiovascular Diseases

Abstract

Sarcopenia refers to an age-related reduction of lean body mass. It showed a reciprocal relationship with cardiovascular diseases. Thus, it is imperative to explore pathophysiological mechanisms explaining the relationship between sarcopenia and cardiovascular diseases, along with the clinical assessment, and associated management.  In this review, we discuss how processes such as inflammation, oxidative stress, endothelial dysfunction, neural and hormonal modifications, as well as other metabolic disturbances influence sarcopenia as well as its association with cardiovascular diseases. Moreover, this review provides an overview of both non-pharmacological and pharmacological management for patients with sarcopenia and cardiovascular diseases, with a focus on the potential role of cardiovascular drugs to mitigate sarcopenia.

Downloads

Download data is not yet available.

Author Biographies

Genquen Philip Carado, University of the East Ramon Magsaysay Memorial Medical Center, Philippines

College of Medicine

Edgar Lerma, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA

Section of Nephrology

Marc Gregory Yu, Joslin Diabetes Center and Harvard Medical School, Boston, USA

Section of Vascular Cell Biology

References

Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393(10191):2636–46. https://pubmed.ncbi.nlm.nih.gov/31171417. https://doi.org/10.1016/S0140-6736(19)31138-9.

Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. https://pubmed.ncbi.nlm.nih.gov/30312372. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322506. https://doi.org/10.1093/ageing/afy169.

Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for sarcopenia. J Am Med Dir Assoc. 2014;15(2):95–101. https://pubmed.ncbi.nlm.nih.gov/24461239. https://doi.org/10.1016/j.jamda.2013.11.025.

von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: Facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle. 2010;1(2):129-33. https://pubmed.ncbi.nlm.nih.gov/21475695. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060646. https://doi.org/10.1007/s13539-010-0014-2.

Tyrovolas S, Haro JM, Mariolis A, et al. Skeletal muscle mass and body fat in relation to successful ageing of older adults: The multi-national MEDIS study. Archives of Gerontology and Geriatrics. 2016;66:95–101. https://pubmed.ncbi.nlm.nih.gov/27266673. https://doi.org/10.1016/j.archger.2016.04.017.

Chin SO, Rhee SY, Chon S, et al. Sarcopenia is independently associated with cardiovascular disease in older Korean adults: The Korea National Health and Nutrition Examination Survey (KNHANES) from 2009. PLoS ONE. 2013;8(3):e60119. https://pubmed.ncbi.nlm.nih.gov/23533671. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606314. https://doi.org/10.1371/journal.pone.0060119.

He N, Zhang Y, Zhang L, Zhang S, Ye H. Relationship between sarcopenia and cardiovascular diseases in the elderly: An overview. Front Cardiovasc Med. 2021;8:743710. https://pubmed.ncbi.nlm.nih.gov/34957238. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695853. https://doi.org/10.3389/fcvm.2021.743710.

Gao K, Cao LF, Ma WZ, et al. Association between sarcopenia and cardiovascular disease among middle-aged and older adults: Findings from the China Health and retirement longitudinal study. EClinicalMedicine. 2022;44:101264.

Sasaki K-ichiro, Kakuma T, Sasaki M, Ishizaki Y, Fukami A, Enomoto M, et al. The prevalence of sarcopenia and subtypes in cardiovascular diseases, and a new diagnostic approach. Journal of Cardiology. 2020;76(3):266–72. https://pubmed.ncbi.nlm.nih.gov/35059617. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760427. https://doi.org/10.1016/j.eclinm.2021.101264.

Kalinkovich A, Livshits G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Research Reviews. 2017;35:200–21. https://pubmed.ncbi.nlm.nih.gov/27702700. https://doi.org/10.1016/j.arr.2016.09.008.

Heo JE, Kim HC, Shim J-S, et al. Association of appendicular skeletal muscle mass with carotid intima-media thickness according to body mass index in Korean adults. Epidemiol Health. 2018;40:e2018049. https://pubmed.ncbi.nlm.nih.gov/30336662. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288657. https://doi.org/10.4178/epih.e2018049.

Piotrowicz K, Gryglewska B, Grodzicki T, Gąsowski J. Arterial stiffness and frailty - a systematic review and metaanalysis. Exp Gerontology. 2021;153:111480. https://pubmed.ncbi.nlm.nih.gov/34265411. https://doi.org/10.1016/j.exger.2021.111480.

Amarasekera AT, Chang D, Schwarz P, Tan TC. Does vascular endothelial dysfunction play a role in physical frailty and sarcopenia? A systematic review. Age Ageing. 2021;50(3):725-32. https://pubmed.ncbi.nlm.nih.gov/33951149. https://doi.org/10.1093/ageing/afaa237

Konukoglu D, Uzun H. Endothelial dysfunction and hypertension. Adv Exp Med Biol. 2016;965:511–40. https://pubmed.ncbi.nlm.nih.gov/28035582. https://doi.org/10.1007/5584_2016_90.

Zhang N, Zhu WL, Liu XH, et al. Prevalence and prognostic implications of sarcopenia in older patients with coronary heart disease. J Geriatr Cardiol. 2019;16(10):756-63. https://pubmed.ncbi.nlm.nih.gov/31700515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828602. https://doi.org/10.11909/j.issn.1671-5411.2019.10.002.

Xia M-F, Chen L-Y, Wu L, et al. Sarcopenia, sarcopenic overweight/obesity and risk of cardiovascular disease and Cardiac arrhythmia: A cross-sectional study. Clin Nutr. 2021;40(2):571–80. https://pubmed.ncbi.nlm.nih.gov/32593523. https://doi.org/10.1016/j.clnu.2020.06.003.

Santana Nde, Mendes RM, Silva NF, Pinho CP. Sarcopenia and sarcopenic obesity as prognostic predictors in hospitalized elderly patients with acute myocardial infarction. Einstein (São Paulo). 2019;17(4):eAO4632. https://pubmed.ncbi.nlm.nih.gov/31433007. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706224. https://doi.org/10.31744/einstein_journal/2019AO4632.

Kim CH, Rhee TM, Park KW, et al. Association between low muscle mass and prognosis of patients with coronary artery disease undergoing percutaneous coronary intervention. J Am Heart Assoc. 2021;10(1):e018554. https://pubmed.ncbi.nlm.nih.gov/33372526. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955465. https://doi.org/10.1161/JAHA.120.018554.

Leenders M, Verdijk LB, van der Hoeven L, et al. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc. 2013;14(8):585–92. https://pubmed.ncbi.nlm.nih.gov/23537893. https://doi.org/10.1016/j.jamda.2013.02.006.

Morley JE, Malmstrom TK, Rodriguez-Mañas L, Sinclair AJ. Frailty, sarcopenia and diabetes. J Am Med Dir Assoc. 2014;15(12):853–9. https://pubmed.ncbi.nlm.nih.gov/25455530. https://doi.org/10.1016/j.jamda.2014.10.001.

Olson LC, Redden JT, Schwartz Z, Cohen DJ, McClure MJ. Advanced glycation end-products in skeletal muscle aging. Bioengineering (Basel). 2021;8(11):168. https://pubmed.ncbi.nlm.nih.gov/34821734. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614898. https://doi.org/10.3390/bioengineering8110168.

Fulster S, Tacke M, Sandek A, et al. Muscle wasting in patients with chronic heart failure: Results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2012;34(7):512–9. https://pubmed.ncbi.nlm.nih.gov/23178647. https://doi.org/10.1093/eurheartj/ehs381.

Dick SA, Epelman S. Chronic heart failure and inflammation. Circ Res. 2016;119(1):159–76. https://pubmed.ncbi.nlm.nih.gov/27340274. https://doi.org/10.1161/CIRCRESAHA.116.308030.

Costamagna D, Costelli P, Sampaolesi M, Penna F. Role of Inflammation in Muscle Homeostasis and Myogenesis. Mediators Inflamm. 2015;2015:805172. https://pubmed.ncbi.nlm.nih.gov/26508819. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609834. htpps://doi.org/10.1155/2015/805172.

Reiss AB, Siegart NM, De Leon J. Interleukin-6 in atherosclerosis: atherogenic or atheroprotective? Clin Lipidol. 2017;12(1):14–23. https://doi.org/10.1080/17584299.2017.1319787.

Tap L, Kirkham FA, Mattace-Raso F, Joly L, Rajkumar C, Benetos A. Unraveling the links underlying arterial stiffness, bone demineralization, and muscle loss. Hypertension. 2020;76(3):629–39. https://pubmed.ncbi.nlm.nih.gov/32755468. https://doi.org/10.1161/HYPERTENSIONAHA.120.15184.

Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: Vascular intrinsic and extrinsic factors and potential role of IL-6. Nat Rev Cardiol. 2020;18(1):58–68. https://pubmed.ncbi.nlm.nih.gov/32918047. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484613. https://doi.org/10.1038/s41569-020-0431-7.

Yoon S-K, Kim H-N, Song S-W. Associations of skeletal muscle mass with atherosclerosis and inflammatory markers in Korean adults. Arch Gerontol Geriatr. 2020;90:104163. https://pubmed.ncbi.nlm.nih.gov/32629371. https://doi.org/10.1016/j.archger.2020.104163.

Curcio F, Testa G, Liguori I, et al. Sarcopenia and heart failure. Nutrients. 2020;12(1):211. https://pubmed.ncbi.nlm.nih.gov/31947528. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019352. https://doi.org/10.3390/nu12010211.

McKellar GE, McCarey DW, Sattar N, McInnes IB. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat Rev Cardiol. 2009;6(6):410–7. https://pubmed.ncbi.nlm.nih.gov/19421244. https://doi.org/10.1038/nrcardio.2009.57.

Dalle S, Rossmeislova L, Koppo K. The role of inflammation in age-related sarcopenia. Frontiers in Physiology. 2017;8:1045. https://pubmed.ncbi.nlm.nih.gov/29311975. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733049. https://doi.org/10.3389/fphys.2017.01045.

Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. https://pubmed.ncbi.nlm.nih.gov/29731617. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927356. https://doi.org/10.2147/CIA.S158513.

Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):H2181-90. https://pubmed.ncbi.nlm.nih.gov/21949114. https://doi.org/10.1152/ajpheart.00554.2011.

Giannitsi S, Maria B, Bechlioulis A, Naka K. Endothelial dysfunction and heart failure: A review of the existing bibliography with emphasis on flow mediated dilation. JRSM Cardiovasc Dis. 2019;8:204800401984304. https://pubmed.ncbi.nlm.nih.gov/31007907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460884. https://doi.org/10.1177/2048004019843047.

dos Santos MR, Saitoh M, Ebner N, et al. Sarcopenia and endothelial function in patients with chronic heart failure: Results from the studies investigating comorbidities aggravating heart failure (SICA-HF). J Am Med Dir Assoc. 2017;18(3):240–5. https://pubmed.ncbi.nlm.nih.gov/27816483. https://doi.org/ 10.1016/j.jamda.2016.09.006.

Lena A, Anker MS, Springer J. Muscle wasting and sarcopenia in heart failure—the current state of science. Int J Mol Sci. 2020;21(18):6549. https://pubmed.ncbi.nlm.nih.gov/32911600. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555939. https://doi.org/10.3390/ijms21186549.

Feike Y, Zhijie L, Wei C. Advances in research on pharmacotherapy of sarcopenia. Aging Med (Milton). 2021;4(3):221-33. https://pubmed.ncbi.nlm.nih.gov/34553120. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444957. https://doi.org/10.1002/agm2.12168.

Kim YS, Sainz RD, Summers RJ, Molenaar P. Cimaterol reduces β-adrenergic receptor density in rat skeletal muscles. J Anim Sci. 1992;70(1):115–22. https://pubmed.ncbi.nlm.nih.gov/1374751. https://doi.org/10.2527/1992.701115x.

Fonseca GWPD, Santos MRD, Souza FR, et al. Sympatho-vagal imbalance is associated with sarcopenia in male patients with heart failure. Arq Bras Cardiol. 2019;112(6):739-46. https://pubmed.ncbi.nlm.nih.gov/30970141. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636362. https://doi.org/10.5935/abc.20190061.

Kontoleon PE, Anastasiou-Nana MI, Papapetrou PD, Alexopoulos G, Ktenas V, Rapti AC, et al. Hormonal profile in patients with congestive heart failure. International Journal of Cardiology. 2003;87(2-3):179–83.

Cicoira M, Kalra PR, Anker SD. Growth hormone resistance in chronic heart failure and its therapeutic implications. Journal of Cardiac Failure. 2003;9(3):219–26.

Breitbart A, Auger-Messier M, Molkentin JD, Heineke J. Myostatin from the heart: Local and systemic actions in cardiac failure and muscle wasting. Am J Physiol Heart Circ Physiol. 2011;300(6):H1973-82. https://pubmed.ncbi.nlm.nih.gov/21421824. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119101. https://doi.org/10.1152/ajpheart.00200.2011.

Sharma M, Kambadur R, Matthews KG, et al. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol. 1999;180(1):1-9. https://pubmed.ncbi.nlm.nih.gov/10362012. https://doi.org/10.1002/(SICI)1097-4652(199907)180:1<1::AID-JCP1>3.0.CO;2-V.

Gruson D, Ahn SA, Ketelslegers JM, Rousseau MF. Increased plasma myostatin in heart failure. Eur J Heart Fail. 2011;13(7):734-6. https://pubmed.ncbi.nlm.nih.gov/21467027. https://doi.org/10.1093/eurjhf/hfr024.

Amare H, Hamza L, Asefa H. Malnutrition and associated factors among heart failure patients on follow up at Jimma University Specialized Hospital, Ethiopia. BMC Cardiovasc Disord. 2015;15(1):128. https://pubmed.ncbi.nlm.nih.gov/26471898. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608297. https://doi.org/10.1186/s12872-015-0111-4.

Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010;39(4):412–23. https://pubmed.ncbi.nlm.nih.gov/20392703. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886201. https://doi.org/10.1093/ageing/afq034.

Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: Etiology, clinical consequences, intervention, and assessment. Osteoporosis Int. 2009;21(4):543–59. https://pubmed.ncbi.nlm.nih.gov/19779761. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832869. https://doi.org/10.1007/s00198-009-1059-y.

Barbat-Artigas S, Pion CH, Leduc-Gaudet J-P, Rolland Y, Aubertin-Leheudre M. Exploring the role of Muscle Mass, obesity, and age in the relationship between muscle quality and physical function. Journal of the American Medical Directors Association. 2014;15(4).

Tian S, Xu Y. Association of sarcopenic obesity with the risk of all-cause mortality: A meta-analysis of prospective cohort studies. Geriatr Gerontol Int. 2015;16(2):155–66. https://pubmed.ncbi.nlm.nih.gov/26271226. https://doi.org/10.1111/ggi.12579.

Pu CT, Johnson MT, Forman DE, et al. Randomized trial of progressive resistance training to counteract the myopathy of chronic heart failure. J Appl Physiol. 2001;90(6):2341–50. https://pubmed.ncbi.nlm.nih.gov/11356801. https://doi.org/10.1152/jappl.2001.90.6.2341.

Malmstrom TK, Morley JE. SARC-F: A simple questionnaire to rapidly diagnose sarcopenia. J Am Med Dir Assoc. 2013;14(8):531–2. https://pubmed.ncbi.nlm.nih.gov/23810110. https://doi.org/10.1016/j.jamda.2013.05.018.

Barbosa-Silva TG, Menezes AM, Bielemann RM, Malmstrom TK, Gonzalez MC, COCONUT. Enhancing SARC-F: improving sarcopenia screening in the clinical practice. J Am Med Dir Assoc. 2016;17(12):1136-41. https://pubmed.ncbi.nlm.nih.gov/27650212. https://doi.org/10.1016/j.jamda.2016.08.004.

Dhillon RJS, Hasni S. Pathogenesis and management of sarcopenia. Clin Geriatr Med. 2017;33(1):17–26. https://pubmed.ncbi.nlm.nih.gov/27886695. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127276. https://doi.org/10.1016/j.cger.2016.08.002.

Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21(3):300-7. https://pubmed.ncbi.nlm.nih.gov/32033882. https://doi.org/10.1016/j.jamda.2019.12.012.

Marzetti E, Calvani R, DuPree J, et al. Late-life enalapril administration induces nitric oxide-dependent and independent metabolic adaptations in the rat skeletal muscle. AGE. 2012;35(4):1061–75. https://pubmed.ncbi.nlm.nih.gov/22639176. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705103. https://doi.org/10.1007/s11357-012-9428-4.

Loh DR, Tan RS, Lim WS, Koh AS. Cardio-sarcopenia: A syndrome of concern in aging. Front Med (Lausanne). 2022;9:1027466. https://pubmed.ncbi.nlm.nih.gov/36388892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640679. https://doi.org/10.3389/fmed.2022.1027466.

Caulfield L, Heslop P, Walesby KE, Sumukadas D, Sayer AA, Witham MD. Effect of angiotensin system inhibitors on physical performance in older people – a systematic review and meta-analysis. J Am Med Dir Assoc. 2021;22(6):1215-21.e2. https://pubmed.ncbi.nlm.nih.gov/32859513. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189253. https://doi.org/10.1016/j.jamda.2020.07.012.

Burnier M, Egan BM. Adherence in hypertension. Circ Res. 2019;124(7):1124–40. https://pubmed.ncbi.nlm.nih.gov/30920917. https://doi.org/10.1161/CIRCRESAHA.118.313220.

Burks TN, Andres-Mateos E, Marx R, et al. Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia. Sci Transl Med. 2011;3(82):82ra37. https://pubmed.ncbi.nlm.nih.gov/21562229. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140459. https://doi.org/10.1126/scitranslmed.3002227.

Lin CH, Chang PC, Chu PH, Chuang YF, Huang RC, Chen CN. Effects of losartan and exercise on muscle mass and exercise endurance of old mice. Exp Gerontol. 2022;165:111869. https://pubmed.ncbi.nlm.nih.gov/35710057. https://doi.org/10.1016/j.exger.2022.111869.

Ng TP, Nguyen TN, Gao Q, Nyunt MS, Yap KB, Wee SL. Angiotensin receptor blockers use and changes in frailty, muscle mass, and function indexes: Singapore Longitudinal Ageing Study. JCSM Rapid Communications. 2021;4(2):111–21. https://doi.org/10.1002/rco2.31.

Lee JL, Zhang C, Westbrook R, et al. Serum concentrations of losartan metabolites correlate with improved physical function in a pilot study of prefrail older adults. J Gerontol A Biol Sci Med Sci. 2022;77(12):2356–66. https://pubmed.ncbi.nlm.nih.gov/35511890. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9799219. https://doi.org/10.1093/gerona/glac102.

Bea JW, Wassertheil-Smoller S, Wertheim BC, et al. Associations between ACE-inhibitors, angiotensin receptor blockers, and lean body mass in community dwelling older women. J Aging Res. 2018:8491092.

https://pubmed.ncbi.nlm.nih.gov/29670769. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5836326. https://doi.org/10.1155/2018/8491092.

Burniston J, Saini A, Tan L, Goldspink D. Aldosterone induces myocyte apoptosis in the heart and skeletal muscles of rats in vivo. J Mol Cell Cardiol. 2005;39(2):395–9. https://pubmed.ncbi.nlm.nih.gov/15907929. https://doi.org/10.1016/j.yjmcc.2005.04.001.

Farquharson CA, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation. 2000;101(6):594–7. https://pubmed.ncbi.nlm.nih.gov/10673249. https://doi.org/10.1161/01.cir.101.6.594.

Edelmann F, Wachter R, Schmidt AG, et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction. JAMA. 2013;309(8):781. https://pubmed.ncbi.nlm.nih.gov/23443441. https://doi.org/10.1001/jama.2013.905.

Burton LA, Sumukadas D, Witham MD, Struthers AD, McMurdo MET. Effect of spironolactone on physical performance in older people with self-reported physical disability. Am J Med. 2013;126(7):590–7. https://pubmed.ncbi.nlm.nih.gov/23706520. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695565. https://doi.org/10.1016/j.amjmed.2012.11.032.

Lim SY. Role of statins in coronary artery disease. Chonnam Med J. 2013;49(1):1–6. https://pubmed.ncbi.nlm.nih.gov/23678470. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651980. https://doi.org/10.4068/cmj.2013.49.1.1.

Sahebkar A, Cicero AFG, Di Giosia P, et al. Pathophysiological mechanisms of statin-associated myopathies: Possible role of the ubiquitin-proteasome system. J Cachexia Sarcopenia Muscle. 2020;11(5):1177–86. https://pubmed.ncbi.nlm.nih.gov/32743965. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567138. https://doi.org/10.1002/jcsm.12579.

Harada, H, Nishiyama, Y, Niiyama, H, Katoh, A, Kai, H. Angiotensin II receptor blocker and statin combination therapy associated with higher skeletal muscle index in patients with cardiovascular disease: A retrospective study. J Clin Pharm Ther. 2022;47(1):89–96. https://pubmed.ncbi.nlm.nih.gov/34668212. https://doi.org/10.1111/jcpt.13540.

Valdiviesso R, Sousa-Santos AR, Azevedo LF, et al. Statins are associated with reduced likelihood of sarcopenia in a sample of heart failure outpatients: A cross-sectional study. BMC Cardiovasc Disord. 2022;22(1):356. https://pubmed.ncbi.nlm.nih.gov/35931947. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354359. https://doi.org/10.1186/s12872-022-02804-5.

Clark AL, Coats AJS, Krum H, et al. Effect of beta-adrenergic blockade with carvedilol on cachexia in severe chronic heart failure: Results from the Copernicus trial. J Cachexia Sarcopenia Muscle. 2017;8(4):549–56. https://pubmed.ncbi.nlm.nih.gov/28244261. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566644. https://doi.org10.1002/jcsm.12191.

Lainscak M, Keber I, Anker SD. Body composition changes in patients with systolic heart failure treated with beta blockers: A pilot study. Int J Cardiol. 2006;106(3):319–22. https://pubmed.ncbi.nlm.nih.gov/16337039. https://doi.org/10.1016/j.ijcard.2005.01.061.

Bian A, Ma Y, Zhou X, et al. Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC Musculoskelet Disord. 2020;21(1):214. https://pubmed.ncbi.nlm.nih.gov/32264885. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140321. https://doi.org/10.1186/s12891-020-03236-y.

Onder G, Liperoti R, Russo A, et al. Body mass index, free insulin-like growth factor I, and physical function among older adults: Results from the IlSIRENTE study. Am J Physiol Endocrinol Metab. 2006;291(4).

Caminiti G, Volterrani M, Iellamo F, et al. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure. J Am Coll Cardiol. 2009;54(10):919–27. https://pubmed.ncbi.nlm.nih.gov/19712802. https://doi.org/10.1016/j.jacc.2009.04.078.

Pugh PJ, Jones RD, West JN, Jones TH, Channer KS. Testosterone treatment for men with chronic heart failure. Heart. 2004;90(4):446–7. https://pubmed.ncbi.nlm.nih.gov/15020527. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1768161. https://doi.org/10.1136/hrt.2003.014639.

Neil D, Clark RV, Magee M, Billiard J, Chan A, Xue Z, et al. GSK2881078, a SARM, produces dose-dependent increases in lean mass in healthy older men and women. J Clin Endocrinol Metab.2018;103(9):3215–24. https://pubmed.ncbi.nlm.nih.gov/29982690. https://doi.org/10.1210/jc.2017-02644.

Chisamore MJ, Gentile MA, Dillon GM, Baran M, Gambone C, Riley S, et al. A novel selective androgen receptor modulator (SARM) MK-4541 exerts anti-androgenic activity in the prostate cancer xenograft R–3327G and anabolic activity on skeletal muscle mass & function in castrated mice. J Steroid Biochem Mol Biol. 2016;163:88–97. https://pubmed.ncbi.nlm.nih.gov/27106747. https://doi.org/10.1016/j.jsbmb.2016.04.007.

Barazzoni R, Cappellari GG, Palus S, et al. Acylated ghrelin treatment normalizes skeletal muscle mitochondrial oxidative capacity and Akt phosphorylation in rat chronic heart failure. J Cachexia Sarcopenia Muscle. 2017;8(6):991–8. https://pubmed.ncbi.nlm.nih.gov/29098797. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700435. https://doi.org/10.1002/jcsm.12254.

Muir SW, Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: A systematic review and meta-analysis. J Am Geriatrics Soc. 2011;59(12):2291–300. https://pubmed.ncbi.nlm.nih.gov/22188076. https://doi.org/10.1111/j.1532-5415.2011.03733.x.

Murphy CH, Oikawa SY, Phillips SM. Dietary protein to maintain muscle mass in aging: A case for per-meal protein recommendations.J Frailty Aging. 2016;5(1):49-58. https://pubmed.ncbi.nlm.nih.gov/26980369. https://doi.org/10.14283/jfa.2016.80.

Deer RR, Volpi E. Protein intake and muscle function in older adults. Curr Opin Clin Nutr Metab Care. 2015;18(3):248–53. https://pubmed.ncbi.nlm.nih.gov/25807346. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394186. https://doi.org/10.1097/MCO.0000000000000162.

Moore DR, Churchward-Venne TA, Witard O, et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci. 2014;70(1):57–62. https://pubmed.ncbi.nlm.nih.gov/25056502. https://doi.org/10.1093/gerona/glu103.

Lancha AH, Zanella R, Tanabe SG, Andriamihaja M, Blachier F. Dietary protein supplementation in the elderly for limiting muscle mass loss. Amino Acids. 2016;49(1):33–47. https://pubmed.ncbi.nlm.nih.gov/27807658. https://doi.org/10.1007/s00726-016-2355-4.

Hamarsland H, Nordengen AL, Nyvik Aas S, et al. Native whey protein with high levels of leucine results in similar post-exercise muscular anabolic responses as regular whey protein: a randomized controlled trial. J Int Soc Sports Nutr. 2017;14:43. https://pubmed.ncbi.nlm.nih.gov/29200982. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697397. https://doi.org/10.1186/s12970-017-0202-y.

Lowery RP, Joy JM, Rathmacher JA, et al. Interaction of beta-hydroxy-beta-methylbutyrate free acid and adenosine triphosphate on muscle mass, strength, and power in resistance trained individuals. J Strength Cond Res. 2016;30(7):1843–54. https://pubmed.ncbi.nlm.nih.gov/24714541. https://doi.org/10.1519/JSC.0000000000000482.

Holeček M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J Cachexia Sarcopenia Muscle. 2017;8(4):529–41. https://pubmed.ncbi.nlm.nih.gov/28493406. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566641. https://doi.org/10.1002/jcsm.12208.

Rossi AP, D’Introno A, Rubele S, et al. The potential of β-hydroxy-β-methylbutyrate as a new strategy for the management of Sarcopenia and sarcopenic obesity. Drugs Aging. 2017;34(11):833–40. https://pubmed.ncbi.nlm.nih.gov/29086232. https://doi.org/10.1007/s40266-017-0496-0.

Silva VR, Belozo FL, Micheletti TO, et al. Β-hydroxy-β-methylbutyrate free acid supplementation may improve recovery and muscle adaptations after resistance training: A systematic review. Nutr Res. 2017;45:1–9. PMID: 29037326. https://doi.org/10.1016/j.nutres.2017.07.008.

Costa Riela Nde, Alvim Guimarães MM, Oliveira de Almeida D, Araujo EM. Effects of beta-hydroxy-beta-methylbutyrate supplementation on elderly body composition and muscle strength: A review of clinical trials. Ann Nutr Metab. 2021;77(1):16–22.PMID: 33709969. https://doi.org/10.1159/000514236.

Bacurau AVN, Jannig PR, de Moraes WMAM, et al. AKT/mTOR pathway contributes to skeletal muscle anti-atrophic effect of aerobic exercise training in heart failure mice. Int J Cardiol. 2016;214:137–47. https://pubmed.ncbi.nlm.nih.gov/27060274. https://doi.org/016.03.071.

Pearson MJ, Mungovan SF, Smart NA. Effect of aerobic and resistance training on inflammatory markers in heart failure patients: Systematic Review and meta-analysis. Heart Fail Rev. 2018;23(2):209–23. https://pubmed.ncbi.nlm.nih.gov/29392623. https://doi.org/10.1007/s10741-018-9677-0

Smart N, Steele M. Exercise training in hemodialysis patients: A systematic review and meta-analysis. Nephrology. 2011; 16(7):626-32. https://pubmed.ncbi.nlm.nih.gov/21557787. https://doi.org/7.2011.01471.x.

Gielen S, Sandri M, Kozarez I, et al. Exercise training attenuates MURF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age. Circulation. 2012;125(22):2716–27. https://pubmed.ncbi.nlm.nih.gov/22565934. https://doi.org/10.1161/CIRCULATIONAHA.111.047381.

Lenk K, Erbs S, Höllriegel R, et al. Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. Eur J Prev Cardiol. 2011;19(3):404–11. https://pubmed.ncbi.nlm.nih.gov/21450574. https://doi.org/10.1177/1741826711402735.

Downloads

Published

2023-10-27

How to Cite

Rivera, F. B., Escolano, B. T. ., Nifas, F. M., Choi, S., Carado, G. P., Lerma, E., Vijayaraghavan, K. ., & Yu, M. G. (2023). Interrelationship of Sarcopenia and Cardiovascular Diseases: A Review of Potential Mechanisms and Management. Journal of the ASEAN Federation of Endocrine Societies. Retrieved from https://asean-endocrinejournal.org/index.php/JAFES/article/view/2677

Issue

Section

Review Articles

Most read articles by the same author(s)