Fructosamine and HbA1c

A Correlational Study in a Southeast Asian Population

Authors

DOI:

https://doi.org/10.15605/jafes.039.01.14

Keywords:

Nil

Abstract

Objectives. Fructosamine correlates well with glycated haemoglobin (HbA1c) in Caucasians. This study investigates this correlation and whether fructosamine can reliably estimate glycated haemoglobin in Southeast Asians.

Methodology. We recruited 193 participants based on 4 HbA1c bands (<6.0%; 6.0 – 7.9%; 8.0– 9.9%; ≥10%) from a secondary hospital in Singapore between August 2017 and December 2021. Blood samples for fructosamine, glycated haemoglobin, albumin, haemoglobin, thyroid stimulating hormone and creatinine were drawn in a single setting for all participants. Scatter plot was used to explore correlation between fructosamine and glycated haemoglobin. Strength of linear correlation was reported using Pearson’s correlation coefficient. Simple linear regression was used to examine the relationship between fructosamine and glycated haemoglobin.

Results. We performed simple linear regression to study the relationship between fructosamine and HbA1c in the research participants (R2 = 0.756, p<0.01). Further analysis with natural logarithmic transformation of fructosamine demonstrated a stronger correlation between HbA1c and fructosamine (R2 = 0.792, p<0.01).

Conclusions. Fructosamine is reliably correlated with HbA1c for the monitoring of glycaemic control in Southeast Asians.

Downloads

Download data is not yet available.

Author Biographies

Kurumbian Chandran, Ng Teng Fong General Hospital

National University Health System, Department of Medicine, Ng Teng Fong Hospital, Singapore

See Muah Lee, Ng Teng Fong Hospital

National University Health System, Department of Medicine, Ng Teng Fong Hospital, Singapore

Liang Shen, University of Singapore

Yong Loo Lin School of Medicine, University of Singapore

Eng Loon Tng, Raffles Hospital

Raffles Medical, Raffles Hospital, Singapore

References

Anguizola J, Matsuda R, Barnaby OS, et al. Review: Glycation of human serum albumin. Clin Chim Acta Int J Clin Chem. 2013;425:64-76. https://pubmed.ncbi.nlm.nih.gov/23891854. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795802. https://doi.org/10.1016/j.cca.2013.07.013.

Hoelzel W, Miedema K. Development of a reference system for the international standardization of HbA1c/glycohemoglobin determinations. J Int Fed Clin Chem. 1996;8(2):62-4, 66-7. https://pubmed.ncbi.nlm.nih.gov/10163516.

Allgrove J, Cockrill BL. Fructosamine or glycated haemoglobin as a measure of diabetic control? Arch Dis Child. 1988;63(4):418-22. https://pubmed.ncbi.nlm.nih.gov/3365012. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1778821. https://doi.org/10.1136/adc.63.4.418.

Tahara Y, Shima K. Kinetics of HbA1c, glycated albumin, and fructosamine and analysis of their weight functions against preceding plasma glucose level. Diabetes Care. 1995;18(4):440-7. https://pubmed.ncbi.nlm.nih.gov/7497851. https://doi.org/10.2337/diacare.18.4.440.

Little RR, Roberts WL. A review of variant hemoglobins interfering with hemoglobin A1c measurement. J Diabetes Sci Technol. 2009;3(3):446-51. https://pubmed.ncbi.nlm.nih.gov/20144281. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2769887. https://doi.org/10.1177/193229680900300307.

Cohen RM, Franco RS, Khera PK, et al. Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c. Blood. 2008;112(10):4284-291. https://pubmed.ncbi.nlm.nih.gov/18694998. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581997. https://doi.org/10.1182/blood-2008-04-154112.

Freedman BI, Shihabi ZK, Andries L, et al. Relationship between assays of glycemia in diabetic subjects with advanced chronic kidney disease. Am J Nephrol. 2010;31(5):375-79. https://pubmed.ncbi.nlm.nih.gov/20299782, https://doi.org/10.1159/000287561.

Panzer S, Kronik G, Lechner K, Bettelheim P, Neumann E, Dudczak R. Glycosylated hemoglobins (GHb): An index of red cell survival. Blood. 1982;59(6):1348-50. https://pubmed.ncbi.nlm.nih.gov/7082831.

Doumatey AP, Feron H, Ekoru K, Zhou J, Adeyemo A, Rotimi CN. Serum fructosamine and glycemic status in the presence of the sickle cell mutation. Diabetes Res Clin Pract. 2021;177:108918. https://pubmed.ncbi.nlm.nih.gov/34126128. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8447861. https://doi.org/10.1016/j.diabres.2021.108918.

Baker JR, O’Connor JP, Metcalf PA, Lawson MR, Johnson RN. Clinical usefulness of estimation of serum fructosamine concentration as a screening test for diabetes mellitus. Br Med J (Clin Res Ed). 1983;287(6396):863-7. https://pubmed.ncbi.nlm.nih.gov/6412861. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1549287. https://doi.org/10.1136/bmj.287.6396.863.

Rendell M, Paulsen R, Eastberg S, et al. Clinical use and time relationship of changes in affinity measurement of glycosylated albumin and glycosylated hemoglobin. Am J Med Sci. 1986;292(1):11-4. https://pubmed.ncbi.nlm.nih.gov/3717201. https://doi.org/10.1097/00000441-198607000-00002.

Armbruster DA. Fructosamine: Structure, analysis, and clinical usefulness. Clin Chem. 1987;33(12):2153-63. Phttps://pubmed.ncbi.nlm.nih.gov/3319287.

Juraschek SP, Steffes MW, Selvin E. Associations of alternative markers of glycemia with hemoglobin A(1c) and fasting glucose. Clin Chem. 2012;58(12):1648-55. https://pubmed.ncbi.nlm.nih.gov/23019309. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652236. https://doi.org/10.1373/clinchem.2012.188367.

Neelofar K, Ahmad J. A comparative analysis of fructosamine with other risk factors for kidney dysfunction in diabetic patients with or without chronic kidney disease. Diabetes Metab Syndr. 2019;13(1):240-4. https://pubmed.ncbi.nlm.nih.gov/30641705. https://doi.org/10.1016/j.dsx.2018.08.007.

Selvin E, Francis LMA, Ballantyne CM, et al. Nontraditional markers of glycemia: associations with microvascular conditions. Diabetes Care. 2011;34(4):960-7. https://pubmed.ncbi.nlm.nih.gov/21335368. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064058. https://doi.org/10.2337/dc10-1945.

Selvin E, Rawlings AM, Grams M, et al. Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2014;2(4):279-88. https://pubmed.ncbi.nlm.nih.gov/24703046. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4212648. https://doi.org/10.1016/S2213-8587(13)70199-2.

Parfitt VJ, Clark JD, Turner GM, Hartog M. Use of fructosamine and glycated haemoglobin to verify self blood glucose monitoring data in diabetic pregnancy. Diabet Med J Br Diabet Assoc. 1993;10(2):162-6. https://pubmed.ncbi.nlm.nih.gov/8458194. https://doi.org/10.1111/j.1464-5491.1993.tb00035.x.

Arslan E, Allshouse AA, Page JM, et al. Maternal serum fructosamine levels and stillbirth: a case-control study of the Stillbirth Collaborative Research Network. BJOG Int J Obstet Gynaecol. 2022;129(4):619-26. https://pubmed.ncbi.nlm.nih.gov/34529344. https://doi.org/10.1111/1471-0528.16922.

Kassebaum NJ, Jasrasaria R, Naghavi M, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123(5):615-24. https://pubmed.ncbi.nlm.nih.gov/24297872. https://pubmed.ncbi.nlm.nih.gov/PMC3907750. https://doi.org/10.1182/blood-2013-06-508325.

Nik Shanita S, Siti Hanisa A, Noor Afifah AR, et al. Prevalence of Anaemia and Iron Deficiency among Primary Schoolchildren in Malaysia. Int J Environ Res Public Health. 2018;15(11):2332. https://pubmed.ncbi.nlm.nih.gov/30360488. https://pubmed.ncbi.nlm.nih.gov/PMC6266561. https://doi.org/10.3390/ijerph15112332.

Poh BK, Ng BK, Siti Haslinda MD, et al. Nutritional status and dietary intakes of children aged 6 months to 12 years: Findings of the Nutrition Survey of Malaysian children (SEANUTS Malaysia). Br J Nutr. 2013;110(Suppl 3):S21-35. https://pubmed.ncbi.nlm.nih.gov/24016764. https://doi.org/10.1017/S0007114513002092.

Loy SL, Lim LM, Chan SY, et al. Iron status and risk factors of iron deficiency among pregnant women in Singapore: A cross-sectional study. BMC Public Health. 2019;19(1):397. https://pubmed.ncbi.nlm.nih.gov/30975203. https://pubmed.ncbi.nlm.nih.gov/PMC6460529. https://doi.org/10.1186/s12889-019-6736-y.

Goh LPW, Chong ETJ, Lee PC. Prevalence of Alpha(α)-thalassemia in Southeast Asia (2010-2020): A meta-analysis involving 83,674 subjects. Int J Environ Res Public Health. 2020;17(20):E7354. https://pubmed.ncbi.nlm.nih.gov/33050119. https://pubmed.ncbi.nlm.nih.gov/PMC7600098. https://doi.org/10.3390/ijerph17207354.

Fucharoen S, Winichagoon P. Haemoglobinopathies in southeast Asia. Indian J Med Res. 2011;134(4):498-506. https://pubmed.ncbi.nlm.nih.gov/22089614. https://pubmed.ncbi.nlm.nih.gov/PMC3237250.

Malmström H, Walldius G, Grill V, Jungner I, Gudbjörnsdottir S, Hammar N. Fructosamine is a useful indicator of hyperglycaemia and glucose control in clinical and epidemiological studies--cross-sectional and longitudinal experience from the AMORIS cohort. PloS One. 2014;9(10):e111463. https://pubmed.ncbi.nlm.nih.gov/25353659. https://pubmed.ncbi.nlm.nih.gov/PMC4213035. https://doi.org/10.1371/journal.pone.0111463.

Rodríguez-Segade S, Rodríguez J, Camiña F. Corrected fructosamine improves both correlation with HbA1C and diagnostic performance. Clin Biochem. 2017;50(3):110-5. https://pubmed.ncbi.nlm.nih.gov/27777100. https://doi.org/10.1016/j.clinbiochem.2016.10.014.

Choi R, Park MJ, Lee S, Lee SG, Lee EH. Association Among Glycemic biomarkers in Korean adults: hemoglobin A1c, fructosamine, and glycated albumin. Clin Lab. 2021;67(7). https://pubmed.ncbi.nlm.nih.gov/34258983. https://doi.org/10.7754/Clin.Lab.2020.201133.

Tessier FJ. The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathol Biol (Paris). 2010;58(3):214-9. https://pubmed.ncbi.nlm.nih.gov/19896783. https://doi.org/10.1016/j.patbio.2009.09.014.

Kim MK, Kwon HS, Baek KH, et al. Effects of thyroid hormone on A1C and glycated albumin levels in nondiabetic subjects with overt hypothyroidism. Diabetes Care. 2010;33(12):2546-8. https://pubmed.ncbi.nlm.nih.gov/20823345. https://pubmed.ncbi.nlm.nih.gov/PMC2992186. https://doi.org/10.2337/dc10-0988.

Udupa SV, Manjrekar PA, Udupa VA, Vivian D. Altered fructosamine and lipid fractions in subclinical hypothyroidism. J Clin Diagn Res. 2013;7(1):18-22. https://pubmed.ncbi.nlm.nih.gov/23449765. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576741. https://doi.org/10.7860/JCDR/2012/5011.2660.

Downloads

Published

2024-02-08

How to Cite

Chandran, K., Lee, S. M., Shen, L., & Tng, E. L. (2024). Fructosamine and HbA1c: A Correlational Study in a Southeast Asian Population. Journal of the ASEAN Federation of Endocrine Societies, 39(1), 26–30. https://doi.org/10.15605/jafes.039.01.14

Issue

Section

Original Articles