Efficacy and Safety of Bromocriptine-QR as an Adjunctive Therapy on Glycemic Control in Subjects with Uncontrolled Type 2 Diabetes Mellitus

A Systematic Review and Meta-analysis

Authors

DOI:

https://doi.org/10.15605/jafes.039.01.19

Keywords:

bromocriptine-QR, type 2 diabetes mellitus, HbA1C, side effects, glycaemic control, dopaminergic

Abstract

Introduction. There has been an increasing awareness of the effects of combining bromocriptine-QR with other medications for diabetes mellitus type 2. This study aimed to assess the efficacy and safety of bromocriptine-QR as an adjunctive therapy for patients with uncontrolled type 2 diabetes mellitus.

Methodology. This systematic review is registered at the International Prospective Register of Systematic Reviews (CRD42022360326). Literature search was done via MEDLINE, NCBI, Google Scholar, Science Direct, Europe PMC and Cochrane Library databases. We included randomized controlled trials with participants 18 years old and above with uncontrolled type 2 diabetes mellitus. The primary outcome of interest is the efficacy and safety of bromocriptine-QR as an adjunctive therapy for glycemic control. Case reports, case series, reviews and animal studies were excluded. The risk of bias was reviewed using the Cochrane Risk of Bias tool. Meta-analysis was performed using Review Manager 5.4 and presented as a weighted mean difference and 95% confidence interval for changes from the baseline level.

Results. Nine studies were included in the systematic review with a total of 2709 participants. The baseline HbA1c in the bromocriptine-QR group was 7.42% and 7.51% in the control group. The bromocriptine-QR group was favoured, outperforming the control group in terms of reducing hemoglobin A1c(HbA1c), with a statistically significant difference (weighted mean difference -0.6%; 95% CI [-0.83,-0.36]; p<0.00001). The most common side effects were nausea (33.75% vs 6.92%), fatigue (13.11% vs 5.94%), and headache (11.17% vs 6.87%).

Conclusion. Administration of bromocriptine-QR at a dose range of 1.6 to 4.8 mg/day as an adjunctive therapy reduced HbA1c and FBG in patients with uncontrolled type 2 diabetes mellitus (T2DM). However, there were also statistically greater odds of the occurrence of adverse events such as nausea, vomiting, and headache compared to controls.

Downloads

Download data is not yet available.

Author Biographies

Theo Audi Yanto, Universitas Pelita Harapan

Department of Internal Medicine, Faculty of Medicine, Universitas Pelita Harapan, Karawaci, Tangerang, Banten, Indonesia

Charista Lydia Budiputri, Universitas Pelita Harapan

Department of Internal Medicine, Faculty of Medicine, Universitas Pelita Harapan, Karawaci, Tangerang, Banten, Indonesia

Michelle Patricia Muljono, Universitas Pelita Harapan

Department of Internal Medicine, Faculty of Medicine, Universitas Pelita Harapan, Karawaci, Tangerang, Banten, Indonesia

Shally Chandra, Universitas Pelita Harapan

Department of Internal Medicine, Faculty of Medicine, Universitas Pelita Harapan, Karawaci, Tangerang, Banten, Indonesia

References

IDF Diabetes Atlas,10th ed. International Diabetes Federation; 2021.

Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2018;61(12):2461–98. https://pubmed.ncbi.nlm.nih.gov/30288571. https://doi.org/10.1007/s00125-018-4729-5.

Mahajan R. Bromocriptine mesylate: FDA-approved novel treatment for type-2 diabetes. Indian J Pharmacol. 2009;41(4):197-8. https://pubmed.ncbi.nlm.nih.gov/20523873. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875741. https://doi.org/10.4103/0253-7613.56070.

Pijl H, Ohashi S, Matsuda M, et al. Bromocriptine: A novel approach to the treatment of type 2 diabetes. Diabetes Care. 2000;23(8):1154–61. https://pubmed.ncbi.nlm.nih.gov/10937514. https://doi.org/10.2337/diacare.23.8.1154,

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://pubmed.ncbi.nlm.nih.gov/33782057. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8005924. https://doi.org/10.1136/bmj.n71.

U.S. Food and Drug Administration. MedWatch: The FDA safety information and adverse event reporting program. Accessed Aug 29, 2022. www.fda.gov/medwatch.

Cochrane Handbook. Obtaining standard deviations from standard errors and confidence intervals for group means. Accessed Sep 29, 2022. https://handbook-5-1.cochrane.org/chapter_7/7_7_3_2_obtaining_standard_deviations_from_standard_errors_and.htm.

Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control Clin Trials. 1996;17(1):1–12. https://pubmed.ncbi.nlm.nih.gov/8721797. https://doi.org/10.1016/0197-2456(95)00134-4.

Higgins J, Green S. Cochrane handbook for systematic reviews of Interventions. www.cochrane-handbook.org.

Guyatt GH, Oxman AD, Vist GE, et al. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6. https://pubmed.ncbi.nlm.nih.gov/18436948. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2335261. https://doi.org/10.1136/bmj.39489.470347.AD.

Santesso N, Glenton C, Dahm P, , et al. GRADE guidelines 26: Informative statements to communicate the findings of systematic reviews of interventions. J Clin Epidemiol. 2020;119:126–35. https://pubmed.ncbi.nlm.nih.gov/31711912. https://doi.org/10.1016/j.jclinepi.2019.10.014.

Singh A, Hussain S, Najmi AK. Number of studies, heterogeneity, generalisability, and the choice of method for meta-analysis. J Neurol Sci. 2017;381:347. https://pubmed.ncbi.nlm.nih.gov/28967410. https://doi.org/10.1016/j.jns.2017.09.026.

Sedgwick P. Meta-analyses: What is heterogeneity? BMJ. 2015;350:h1435. https://pubmed.ncbi.nlm.nih.gov/25778910. https://doi.org/10.1136/bmj.h1435.

Aminorroaya A, Janghorbani M, Ramezani M, Haghighi S, Amini M. Does bromocriptine improve glycemic control of obese type-2 diabetics? Horm Res Paediatr. 2004;62(2):55–9. https://pubmed.ncbi.nlm.nih.gov/15205563. https://doi.org/10.1159/000078932.

Vinik AI, Cincotta AH, Scranton RE, Bohannon N, Ezrokhi M, Gaziano JM. Effect of bromocriptine-QR on glycemic control in subjects with uncontrolled hyperglycemia on one or two oral anti-diabetes agents. Endocr Pract. 2012;18(6):931–43. https://pubmed.ncbi.nlm.nih.gov/23186965. https://doi.org/10.4158/EP12187.OR.

Liang W, Gao L, Li N, et al. Efficacy and safety of bromocriptine-qr in type 2 diabetes: A systematic review and meta-analysis. Horm Metab Res. 2015;47(11):805–12. https://pubmed.ncbi.nlm.nih.gov/26332757. https://doi.org/10.1055/s-0035-1559684.

Shivaprasad C, Kalra S. Bromocriptine in type 2 diabetes mellitus. Indian J Endocrinol Metab. 2011;15(5):17. https://pubmed.ncbi.nlm.nih.gov/21847449. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152192. https://doi.org/10.4103/2230-8210.83058.

Kalra S, Kalra B, Agrawal N, Kumar S. Dopamine: The forgotten felon in type 2 diabetes. Recent Pat Endocr Metab Immune Drug Discov. 2011;5(1):61–5. https://pubmed.ncbi.nlm.nih.gov/22074579. https://doi.org/10.2174/187221411794351842.

Luo S, Luo J, Cincotta AH. Chronic ventromedial hypothalamic infusion of norepinephrine and serotonin promotes insulin resistance and glucose intolerance. Neuroendocrinology. 1999;70(6):460–5. https://pubmed.ncbi.nlm.nih.gov/10657739. https://doi.org/10.1159/000054508.

Cincotta AH, Meier AH, Cincotta Jr M. Bromocriptine improves glycaemic control and serum lipid profile in obese Type 2 diabetic subjects: A new approach in the treatment of diabetes. Expert Opin Investig Drugs. 1999;8(10):1683–707. https://pubmed.ncbi.nlm.nih.gov/11139820. https://doi.org/10.1517/13543784.8.10.1683.

DeFronzo RA. Bromocriptine: A sympatholytic, D2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care. 2011;34(4):789–94. https://pubmed.ncbi.nlm.nih.gov/21447659. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064029. https://doi.org/10.2337/dc11-0064.

Luo S, Meier AH, Cincotta AH. Bromocriptine Reduces Obesity, Glucose Intolerance and Extracellular Monoamine Metabolite Levels in the Ventromedial Hypothalamus of Syrian Hamsters. Neuroendocrinology. 1998;68(1):1–10. https://pubmed.ncbi.nlm.nih.gov/9695933. https://doi.org/10.1159/000054344.

Chamarthi B, Gaziano JM, Blonde L, et al. Timed bromocriptine-QR therapy reduces progression of cardiovascular disease and dysglycemia in subjects with well-controlled type 2 diabetes mellitus. J Diabetes Res. 2015;2015:157698. https://pubmed.ncbi.nlm.nih.gov/26060823. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4427775. https://doi.org/10.1155/2015/157698.

Cincotta AH, Cersosimo E, Alatrach M, et al. Bromocriptine-QR therapy reduces sympathetic tone and ameliorates a pro-oxidative/pro-inflammatory phenotype in peripheral blood mononuclear cells and plasma of type 2 diabetes subjects. Int J Mol Sci. 2022;23(16):8851. https://pubmed.ncbi.nlm.nih.gov/36012132. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407769. https://doi.org/10.3390/ijms23168851.

Gaziano JM, Cincotta AH, O’Connor CM, et al. Randomized clinical trial of quick-release bromocriptine among patients with type 2 diabetes on overall safety and cardiovascular outcomes. Diabetes Care. 2010;33(7):1503–8. https://pubmed.ncbi.nlm.nih.gov/20332352. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890350. https://doi.org/10.2337/dc09-2009.

Gaziano JM, Cincotta AH, Vinik A, Blonde L, Bohannon N, Scranton R. Effect of bromocriptine‐QR (a quick‐release formulation of bromocriptine mesylate) on major adverse cardiovascular events in type 2 diabetes subjects. J Am Heart Assoc. 2012;1(5): e002279. https://pubmed.ncbi.nlm.nih.gov/23316290. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3541616. https://doi.org/10.1161/JAHA.112.002279.

Chamarthi B, Ezrokhi M, Rutty D, Cincotta AH. Impact of bromocriptine-QR therapy on cardiovascular outcomes in type 2 diabetes mellitus subjects on metformin. Postgrad Med. 2016;128(8):761–9. https://pubmed.ncbi.nlm.nih.gov/27687032. https://doi.org/10.1080/00325481.2016.1243003.

Schäfer M, Browne LP, Truong U, et al. Bromocriptine improves central aortic stiffness in adolescents with type 1 diabetes: Arterial health results from the BCQR-T1D study. Hypertension. 2022;80(2):482-91. https://pubmed.ncbi.nlm.nih.gov/36472197. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9852005. https://doi.org/10.1161/HYPERTENSIONAHA.122.19547.

Franchi F, Lazzeri C, Barletta G, Ianni L, Mannelli M. Centrally mediated effects of bromocriptine on cardiac sympathovagal balance. Hypertension. 2001;38(1):123–9. https://pubmed.ncbi.nlm.nih.gov/11463772. https://doi.org/10.1161/01.hyp.38.1.123.

Sowers JR. Dopaminergic control of circadian norepinephrine levels in patients with essential hypertension. J Clin Endocrinol Metab. 1981;53(6):1133–7. https://pubmed.ncbi.nlm.nih.gov/7298797. https://doi.org/10.1210/jcem-53-6-1133.

Alatrach M, Agyin C, Adams J, et al. Glucose lowering and vascular protective effects of cycloset added to GLP-1 receptor agonists in patients with type 2 diabetes. Endocrinol Diabetes Metab. 2018;1(4):e00034. https://pubmed.ncbi.nlm.nih.gov/30815562. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354804. https://doi.org/10.1002/edm2.34.

Via MA, Chandra H, Araki T, Potenza MV, Skamagas M. Bromocriptine approved as the first medication to target dopamine activity to improve glycemic control in patients with type 2 diabetes. Diabetes Metab Syndr Obes. 2010;3:43-8. https://pubmed.ncbi.nlm.nih.gov/21437075. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047985. https://doi.org/10.2147/dmsott.s9575.

Ramteke KB, Ramanand SJ, Ramanand JB, et al. Evaluation of the efficacy and safety of bromocriptine QR in type 2 diabetes. Indian J Endocrinol Metab. 2011;15(5):S33-9. https://pubmed.ncbi.nlm.nih.gov/21847452. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152182. https://doi.org/10.4103/2230-8210.83062.

Cincotta AH, Meier AH. Bromocriptine (Ergoset) reduces body weight and improves glucose tolerance in obese subjects. Diabetes Care. 199;19(6):667–70. https://pubmed.ncbi.nlm.nih.gov/8725871. https://doi.org/10.2337/diacare.19.6.667.

Kamath V, Jones CN, Yip JC, et al. Effects of a quick-release form of bromocriptine (ergoset) on fasting and postprandial plasma glucose, insulin, lipid, and lipoprotein concentrations in obese nondiabetic hyperinsulinemic women. Diabetes Care. 1997;20(11):1697–701. https://pubmed.ncbi.nlm.nih.gov/9353611. https://doi.org/10.2337/diacare.20.11.1697.

Briones-Aranda A, Ramírez-Carballo J, Gómez BAR, et al. Influence of bromocriptine plus metformin treatment on glycaemia and blood pressure in patients with type 2 diabetes mellitus. Rom J Diabetes Nutr Metab Dis. 2018;25(1):59–66. https://www.rjdnmd.org/index.php/RJDNMD/article/view/459.

Chamarthi B, Cincotta AH. Effect of bromocriptine-QR therapy on glycemic control in subjects with type 2 diabetes mellitus whose dysglycemia is inadequately controlled on insulin. Postgrad Med. 2017;129(4):446–55. https://pubmed.ncbi.nlm.nih.gov/28374645. https://doi.org/10.1080/00325481.2017.1315290.

Ghosh A, Sengupta N, Sahana P, Giri D, Sengupta P, Das N. Efficacy and safety of add on therapy of bromocriptine with metformin in Indian patients with type 2 diabetes mellitus: A randomized open labeled phase IV clinical trial. Indian J Pharmacol. 2014;46(1):24-8. https://pubmed.ncbi.nlm.nih.gov/24550580. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912802. https://doi.org/10.4103/0253-7613.125160.

Downloads

Published

2024-02-21

How to Cite

Yanto, T. A., Budiputri, C. L., Muljono, M. P., & Chandra, S. (2024). Efficacy and Safety of Bromocriptine-QR as an Adjunctive Therapy on Glycemic Control in Subjects with Uncontrolled Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. Journal of the ASEAN Federation of Endocrine Societies, 39(1), 95–105. https://doi.org/10.15605/jafes.039.01.19

Issue

Section

*Review Articles