Effects of Combination of Curcumin and Piperine Supplementation on Glycemic Profile in Patients with Prediabetes and Type 2 Diabetes Mellitus
A Systematic Review and Meta-analysis
DOI:
https://doi.org/10.15605/jafes.039.01.18Keywords:
glycemic profile, curcumin, piperine, prediabetes, Type 2 Diabetes MellitusAbstract
Objective. This study aimed to evaluate the effects of combination of curcumin and piperine supplementation on Fasting Plasma Glucose (FPG), Homeostatic Model of Insulin Resistance (HOMA-IR), Body Mass Index (BMI) in patients with prediabetes and type 2 Diabetes Mellitus (T2DM). This review was done to identify potential herbal remedies that may help improve glycemic parameters, leading to better health outcomes in combination with current antidiabetic treatment.
Methodology. This systematic review was based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). It was conducted in 2023 with sources and databases from MEDLINE, EBSCO-Host, ScienceDirect and ProQuest. This paper included randomized-controlled trials exploring the effects of the combination of curcumin and piperine on patients with prediabetes and T2DM. Systematic reviews, observational studies, case reports, case series, conference abstracts, book sections, commentaries/editorials, non-human studies and articles with unavailable full-text and written in non-English language, were excluded. The key terms for the literature search were “curcumin,” “piperine,” “prediabetes” and “Type 2 Diabetes Mellitus.” We use Cochrane Risk of Bias (RoB) 2 for quality assessment of the included studies and Review Manager (RevMan) 5.4 to do the meta-analysis.
Results. A total of three studies were included in this systematic review. Two studies from Neta et al., and Cicero et al., showed no significant difference in HOMA-IR, BMI and FPG levels between the curcumin, piperine and placebo groups. One study from Panahi et al. demonstrated a significant difference in BMI levels between the curcumin and piperine and placebo groups (p <0.01). The meta-analysis showed that FPG levels, HOMA-IR and BMI improved among patients with diabetes given in curcumin and piperine with reported mean differences (MD) of = -7.61, 95% CI [-15.26, 0.03], p = 0.05, MD = -0.36, 95% CI [-0.77 to 0.05], p = 0.09, and MD = -0.41, 95% CI [-0.85 to 0.03], p = 0.07, respectively).
Conclusions. The supplementation of curcumin and piperine showed a numerical reduction in FPG, HOMA-IR and BMI, but were not statistically significant. Further research is needed as there is a paucity of studies included in the review.
Downloads
References
World Health Organization. Diabetes. Accessed June 10, 2023. https://www.who.int/news-room/fact-sheets/detail/diabetes
IDF Diabetes Atlas, 10th ed. Accessed June 10, 2023. https://diabetesatlas.org/.
Safiri S, Karamzad N, Kaufman JS, et al. Prevalence, deaths and disability-adjusted-life-years (dalys) due to type 2 diabetes and its attributable risk factors in 204 countries and territories, 1990-2019: Results from the global burden of disease study 2019. Front Endocrinol. 2022; 13:838027. https://pubmed.ncbi.nlm.nih.gov/35282442. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915203. https://doi.org/10.3389/fendo.2022.838027.
Get a Handle on Diabetes Medication. American Diabetes Association. Accessed June 10, 2023. https://diabetes.org/healthy-living/medication-treatments
Kumar S, Mittal A, Babu D, Mittal A. Herbal medicines for diabetes management and its secondary complications. Curr Diabetes Rev. 2021;17(4):437–56. https://pubmed.ncbi.nlm.nih.gov/33143632. https://doi.org/10.2174/1573399816666201103143225.
Pang GM, Li FX, Yan Y, et al. Herbal medicine in the treatment of patients with type 2 diabetes mellitus. Chin Med J (Engl). 2019;132(1):78–85. https://pubmed.ncbi.nlm.nih.gov/30628962. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629308. https://doi.org//10.1097/CM9.0000000000000006.
Zhang DW, Fu M, Gao SH, Liu JL. Curcumin and diabetes: A systematic review. Evid-Based Complement Alternat Med. 2013;2013:636053. https://pubmed.ncbi.nlm.nih.gov/24348712. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857752. https://doi.org/10.1155/2013/636053.
Marton LT, Pescinini-E-Salzedas LM, Camargo MEC, et al. The effects of curcumin on diabetes mellitus: A systematic review. Front Endocrinol (Lausanne). 2021;12: 669448. https://pubmed.ncbi.nlm.nih.gov/34012421. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126655. https://doi.org/10.3389/fendo.2021.669448.
Nogara L, Naber N, Pate E, Canton M, Reggiani C, Cooke R. Piperine’s mitigation of obesity and diabetes can be explained by its up-regulation of the metabolic rate of resting muscle. Proc Natl Acad Sci. 2016;113(46):13009–14. https://pubmed.ncbi.nlm.nih.gov/27799519. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135373. https://doi.org/10.1073/pnas.1607536113.
Heidari H, Bagherniya M, Majeed M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Curcumin-piperine co-supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother Res. 2023;37(4):1462–87. https://pubmed.ncbi.nlm.nih.gov/36720711. https://doi.org/10.1002/ptr.7737.
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst Rev. 2021;10(1):89. https://pubmed.ncbi.nlm.nih.gov/33781348. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008539. https://doi.org/10.1186/s13643-021-01626-4.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1):S62–9. https://pubmed.ncbi.nlm.nih.gov/20042775. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797383. https://doi.org/10.2337/dc10-S062. Erratum in Diabetes Care. 2010;33(4):e57.
Sterne JAC, Savović J, Page MJ, et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. https://pubmed.ncbi.nlm.nih.gov/31462531. https://doi.org/10.1136/bmj.l4898.
Fletcher J. What is heterogeneity and is it important? BMJ. 2007;334(7584):94–6. https://pubmed.ncbi.nlm.nih.gov/17218716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1767262. https://doi.org/10.1136/bmj.39057.406644.68.
Tantry TP, Karanth H, Shetty PK, Kadam D. Self-learning software tools for data analysis in meta-analysis. Korean J Anesthesiol. 2021;74(5):459–61. https://pubmed.ncbi.nlm.nih.gov/33677944. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497909. https://doi.org/10.4097/kja.21080.
Panahi Y, Hosseini MS, Khalili N, et al. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed Pharmacother. 2016;82:578–82. https://pubmed.ncbi.nlm.nih.gov/27470399. https://doi.org/10.1016/j.biopha.2016.05.037.
Cicero AFG, Sahebkar A, Fogacci F, Bove M, Giovannini M, Borghi C. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: A double-blind, placebo-controlled clinical trial. Eur J Nutr. 2020;59(2):477–83. https://pubmed.ncbi.nlm.nih.gov/30796508. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058573. https://doi.org/10.1007/s00394-019-01916-7.
de Figueiredo Neta JF Veras VS, de Sousa DF, et al. Effectiveness of the piperine-supplemented Curcuma longa L. in metabolic control of patients with type 2 diabetes: A randomised double-blind placebo-controlled clinical trial. Int J Food Sci Nutr. 2021;72(7):968–77. https://pubmed.ncbi.nlm.nih.gov/33586583. https://doi.org/10.1080/09637486.2021.1885015.
Spanakis EK, Golden SH. Race/ethnic difference in diabetes and diabetic complications. Curr Diab Rep. 2013;13(6):814-23. https://pubmed.ncbi.nlm.nih.gov/24037313. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3830901. https://doi.org/10.1007/s11892-013-0421-9.
Shah RR, Gaedigk A. Precision medicine: does ethnicity information complement genotype-based prescribing decisions? Ther Adv Drug Saf. 2018;9(1):45–62. https://pubmed.ncbi.nlm.nih.gov/29318005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753996. https://doi.org/10.1177/2042098617743393.
Viana LV, Leitão CB, Kramer CK, et al. Poor glycaemic control in Brazilian patients with type 2 diabetes attending the public healthcare system: A cross-sectional study. BMJ Open. 2013;3(9):e003336. https://pubmed.ncbi.nlm.nih.gov/24052610. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3780317. https://doi.org/10.1136/bmjopen-2013-003336.
Khan RMM, Chua ZJY, Tan JC, Yang Y, Liao Z, Zhao Y. From pre-diabetes to diabetes: Diagnosis, treatments and translational research. Medicina (Mex). 2019;55(9):546. https://pubmed.ncbi.nlm.nih.gov/31470636. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780236 DOI: 10.3390/medicina55090546.
Flores-Dorantes MT, Díaz-López YE, Gutiérrez-Aguilar R. Environment and gene association with obesity and their impact on neurodegenerative and neurodevelopmental diseases. Front Neurosci. 2020;14:863. https://pubmed.ncbi.nlm.nih.gov/32982666. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483585. https://doi.org/10.3389/fnins.2020.00863.
Kim D, Hou W, Wang F, Arcan C. Factors affecting obesity and waist circumference among US adults. Prev Chronic Dis. 2019;16:E02. https://pubmed.ncbi.nlm.nih.gov/30605422. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341820. https://doi.org/10.5888/pcd16.180220.
Mosha D, Paulo HA, Mwanyika-Sando M, et al. Risk factors for overweight and obesity among women of reproductive age in Dar es Salaam, Tanzania. BMC Nutr. 2021;7(1):37. https://pubmed.ncbi.nlm.nih.gov/34266482. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283918. https://doi.org/10.1186/s40795-021-00445-z.
Jhorawat R, Bansal N, Beniwal P, Agarwal D, Malhotra V. Factors Affecting insulin resistance and its relation to vitamin d status and clinical nutritional parameters in dialysis patients: A single-center Indian study. Indian J Nephrol. 2018;28(1):41–5. https://pubmed.ncbi.nlm.nih.gov/29515300. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830808. https://doi.org/10.4103/ijn.IJN_361_16.
Servida S, Panzeri E, Tomaino L, et al. Overview of curcumin and piperine effects on glucose metabolism: The case of an insulinoma patient’s loss of consciousness. Int J Mol Sci. 2023;24(7):6621. https://pubmed.ncbi.nlm.nih.gov/37047589. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095254. https://doi.org/10.3390/ijms24076621.
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275. https://pubmed.ncbi.nlm.nih.gov/32872570. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7503727. https://doi.org/10.3390/ijms21176275.
Pivari F, Mingione A, Brasacchio C, Soldati L. Curcumin and type 2 diabetes mellitus: Prevention and treatment. Nutrients. 2019;11(8):1837. https://pubmed.ncbi.nlm.nih.gov/31398884. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723242. https://doi.org/10.3390/nu11081837.
Atal S, Atal S, Vyas S, Phadnis P. Bio‑enhancing effect of piperine with metformin on lowering blood glucose level in alloxan induced diabetic mice. Pharmacogn Res. 2016;8(1):56–60. https://pubmed.ncbi.nlm.nih.gov/26941537. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753761. https://doi.org/10.4103/0974-8490.171096.
Meghwal M, Goswami TK. Piper nigrum and piperine: An update. Phytother Res PTR. 2013;27(8):1121–30. https://pubmed.ncbi.nlm.nih.gov/23625885. https://doi.org/10.1002/ptr.4972.
Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64(4):353–6. https://pubmed.ncbi.nlm.nih.gov/9619120. https://doi.org/10.1055/s-2006-957450.
Kaur G, Meena C. Amelioration of obesity, glucose intolerance, and oxidative stress in high-fat diet and low-dose streptozotocin-induced diabetic rats by combination consisting of “curcumin with piperine and quercetin.” ISRN Pharmacol. 2012;2012:957283. https://pubmed.ncbi.nlm.nih.gov/22474599. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317057. https://doi.org/10.5402/2012/957283.
Hodaei H, Adibian M, Nikpayam O, Hedayati M, Sohrab G. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: a randomized, double-blind clinical trial. Diabetol Metab Syndr. 2019;11:41. https://pubmed.ncbi.nlm.nih.gov/31149032. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6537430. https://doi.org/10.1186/s13098-019-0437-7.
Den Hartogh DJ, Gabriel A, Tsiani E. Antidiabetic properties of curcumin II: Evidence from in vivo studies. Nutrients. 2019;12(1):58. https://pubmed.ncbi.nlm.nih.gov/31881654. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019668. https://doi.org/10.3390/nu12010058.
Den Hartogh DJ, Gabriel A, Tsiani E. Antidiabetic properties of curcumin I: Evidence from in vitro studies. Nutrients. 2020;12(1):118. https://pubmed.ncbi.nlm.nih.gov/31906278. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019345. https://doi.org/10.3390/nu12010118.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nicolas Daniel Widjanarko, Erich Tamio, Louis Fabio Jonathan Jusni, Steven Alvianto, Erlangga Saputra Arifin, Maria Riastuti Iryaningrum
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal of the ASEAN Federation of Endocrine Societies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International. (full license at this link: http://creativecommons.org/licenses/by-nc/3.0/legalcode).
To obtain permission to translate/reproduce or download articles or use images FOR COMMERCIAL REUSE/BUSINESS PURPOSES from the Journal of the ASEAN Federation of Endocrine Societies, kindly fill in the Permission Request for Use of Copyrighted Material and return as PDF file to jafes@asia.com or jafes.editor@gmail.com.
A written agreement shall be emailed to the requester should permission be granted.