Calcium, Vitamin D, and Bone Derangement in Nephrotic Syndrome
DOI:
https://doi.org/10.15605/jafes.036.01.12Keywords:
Vitamin D deficiency, hypocalcaemia, bone loss, immune-mediated nephrotic syndromeAbstract
*Visual Abstracts prepared by Dr. Roy Raoul FelipeIntroduction. Derangement in calcium homeostasis is common in nephrotic syndrome (NS). It is postulated that low serum total calcium and vitamin D levels are due to loss of protein-bound calcium and vitamin D. It is unclear if free calcium and free vitamin D levels are truly low. The guideline is lacking with regards to calcium and vitamin D supplementation in NS. This study aims to examine calcium and vitamin D homeostasis and bone turnover in NS to guide practice in calcium and vitamin D levels supplementation.
Methodology. This is a prospective pilot study of ten patients diagnosed with NS, and eight healthy controls. Calcium, vitamin D, and bone turnover-related analytes were assessed at baseline, partial and complete remission in NS patients and in healthy controls.
Results. NS patients had low free and total serum calcium, low total 25(OH)D, normal total 1,25(OH)D levels and lack of parathyroid hormone response. With remission of disease, serum calcium and vitamin D metabolites improved. However, nephrotic patients who do not attain complete disease remission continue to have low 25(OH)D level.
Conclusion. In this study, the vitamin D and calcium derangement observed at nephrotic syndrome presentation trended towards normalisation in remission. This suggested calcium and vitamin D replacement may not be indicated in early-phase nephrotic syndrome but may be considered in prolonged nephrotic syndrome.
Downloads
References
Lim P, Jacob E, Tock EP, Pwee HS. Calcium and phosphorus metabolism in nephrotic syndrome. Q J Med. 1977;46(183):327-38. phttps://www.ncbi.nlm.nih.gov/pubmed/303365.
Mittal SK, Dash SC, Tiwari SC, Agarwal SK, Saxena S, Fishbane S. Bone histology in patients with nephrotic syndrome and normal renal function. Kidney Int. 1999;55(5):1912-9. https://www.ncbi.nlm.nih.gov/pubmed/10231454. https://doi.org/10.1046/j.1523-1755.1999.00413.x.
Malluche HH, Goldstein DA, Massry SA. Osteomalacia and hyperparathyroid bone disease in patients with nephrotic syndrome. J Clin Invest. 1979;63(3):494-500. https://www.ncbi.nlm.nih.gov/pubmed/429568. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC371978. https://doi.org/10.1172/JCI109327.
Korkor A, Schwartz J, Bergfeld M, et al. Absence of metabolic bone disease in adult patients with the nephrotic syndrome and normal renal function. J Clin Endocrinol Metab. 1983;56(3):496-500. https://www.ncbi.nlm.nih.gov/pubmed/6822651. https://doi.org/10.1210/jcem-56-3-496.
Tessitore N, Bonucci E, D'Angelo A, et al., Bone histology and calcium metabolism in patients with nephrotic syndrome and normal or reduced renal function. Nephron. 1984;37(3):153-9. https://www.ncbi.nlm.nih.gov/pubmed/6738766. https://doi.org/10.1159/000183236.
LIM P, Jacob E, Chio LF, Pwee HS. Serum ionized calcium in nephrotic syndrome. Q J Med. 1976;45(179):421-6. https://www.ncbi.nlm.nih.gov/pubmed/948544.
Sato KA, Gray RW, Lemann Jr. A. Urinary excretion of 25-hydroxyvitamin D in health and the nephrotic syndrome. J Lab Clin Med. 1982;99(3):325-30. https://www.ncbi.nlm.nih.gov/pubmed/6977006.
Lambert PW, De Oreo PB, Fu IY, et al. Urinary and plasma vitamin D3 metabolites in the nephrotic syndrome. Metab Bone Dis Relat Res.1982;4(1):7-15. https://www.ncbi.nlm.nih.gov/pubmed/6289039. https://doi.org/10.1016/0221-8747(82)90003-0.
Nishi S, Ubara Y, Utsunomiya Y, et al. Evidence-based clinical practice guidelines for nephrotic syndrome 2014. Clin Exp Nephrol. 2016;20(3):342-70. https://www.ncbi.nlm.nih.gov/pubmed/27099136. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891386. https://doi.org/10.1007/s10157-015-1216-x.
KDIGO Clinical Practice Guideline for Glomerulonephritis (Public review draft); 2020. Available from: https://kdigo.org/wp-content/uploads/2017/02/KDIGO-GN-GL-Public-Review-Draft_1-June-2020.pdf.
Machin D, Campbell MJ, Fayers P, Pinol APY. Sample size tables for clinical studies, 2nd ed. Oxford: Blackwell Science Ltd.; 1997.
Bikle DD, Siiteri PK, Ryzen E, Haddad JG. Serum protein binding of 1,25-dihydroxyvitamin D: A reevaluation by direct measurement of free metabolite levels. J Clin Endocrinol Metab. 1985;61(5): 969-75. https://www.ncbi.nlm.nih.gov/pubmed/3840175. https://doi.org/10.1210/jcem-61-5-969.
van Hoof HJ, de Sévauxet RF, van Baelen H, et al. Relationship between free and total 1,25-dihydroxyvitamin D in conditions of modified binding. Eur J Endocrinol, 2001;144(4):391-6. https://www.ncbi.nlm.nih.gov/pubmed/11275949. https://doi.org/10.1530/eje.0.1440391.
Ong L, Saw S, Sahabdeen NB, Tey KT, Ho CS, Sethi SK. Current 25-hydroxyvitamin D assays: Do they pass the test? Clin Chim Acta, 2012;413(13-14):1127-34. https://www.ncbi.nlm.nih.gov/pubmed/22465235. https://doi.org/10.1016/j.cca.2012.03.009.
Tai SSC, Bedner M, Phinney KW. Development of a candidate reference measurement procedure for the determination of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem. 2010;82(5):1942-8. https://www.ncbi.nlm.nih.gov/pubmed/20136128. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838390. https://doi.org/10.1021/ac9026862.
Ramason, R, Selvaganapathi M, Ismail NHB, Wong WC, Rajamoney GN, Chong MS. Prevalence of vitamin d deficiency in patients with hip fracture seen in an orthogeriatric service in sunny Singapore. Geriatr Orthop Surg Rehab. 2014;5(2):82-6. https://www.ncbi.nlm.nih.gov/pubmed/25360336. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4212370. https://doi.org/10.1177/2151458514528952.
Fujita T, Satomura A, Hidaka M, Ohsawa I, Endo M, Ohi H. Acute alteration in bone mineral density and biochemical markers for bone metabolism in nephrotic patients receiving high-dose glucocorticoid and one-cycle etidronate therapy. Calcif Tissue Int. 2000;66(3):195-9. https://www.ncbi.nlm.nih.gov/pubmed/10666494. https://doi.org/10.1007/s002230010039.
Phan V, Blydt-Hansen T, Feber J, et al., Skeletal findings in the first 12 months following initiation of glucocorticoid therapy for pediatric nephrotic syndrome. Osteoporos Int. 2014;25(2):627-37. https://www.ncbi.nlm.nih.gov/pubmed/23948876. CAMSID: CAMS4544. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100956. https://doi.org/10.1007/s00198-013-2466-7.
Ashida A, Fujii Y, Matsumura H, Tamai H. A case of multiple vertebral compression fractures due to glucocorticoid-induced osteoporosis in a pediatric patient with nephrotic syndrome. Int J Clin Pharmacol Ther. 2017;55(3):264-9. https://www.ncbi.nlm.nih.gov/pubmed/27936525. https://doi.org/10.5414/CP202732.
Fakhouri F, Bocquet N, Taupin P, et al. Steroid-sensitive nephrotic syndrome: from childhood to adulthood. Am J Kidney Dis. 2003;41(3):550-7. https://www.ncbi.nlm.nih.gov/pubmed/12612977. https://doi.org/10.1053/ajkd.2003.50116.
Published
How to Cite
Issue
Section
License
Journal of the ASEAN Federation of Endocrine Societies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International. (full license at this link: http://creativecommons.org/licenses/by-nc/3.0/legalcode).
To obtain permission to translate/reproduce or download articles or use images FOR COMMERCIAL REUSE/BUSINESS PURPOSES from the Journal of the ASEAN Federation of Endocrine Societies, kindly fill in the Permission Request for Use of Copyrighted Material and return as PDF file to jafes@asia.com or jafes.editor@gmail.com.
A written agreement shall be emailed to the requester should permission be granted.