Diabetes and COVID-19: A Review

Authors

  • Arjun Baidya Nil Ratan Sircar Medical College, Kolkata
  • Santosh Kumar Singh Endocrinology and Diabetes Clinic, Patna
  • Sarita Bajaj Motilal Nehru Medical College, Allahabad
  • Abdul Hamid Zargar National Highway Gulshan Nagar Srinagar, Jammu and Kashmir
  • Parminder Singh Dayanand Medical College and Hospital, Ludhiana, Punjab
  • Sambit Das Apollo Hospital, Bhubaneswar
  • Anand Shankar Shankar Diabetes Care, Patna

DOI:

https://doi.org/10.15605/jafes.035.01.06

Keywords:

Corona virus, COVID-19, diabetes mellitus

Abstract

Coronavirus Disease 2019 (COVID-19) is an emerging disease and since its first identification in Wuhan, China, in December 2019, there has been a rapid increase in cases and deaths across the world. COVID-19 has been shown to have an immense impact in infected persons with diabetes, worsening their outcome, especially in elderly, smokers, obese, those having CVD, CKD, poor glycemic control and long duration of diabetes. In this review we summarize the current understanding of `the impact of COVID-19 on diabetes and discusses the pathophysiological mechanisms and management of diabetes and its complication in this scenario.

Downloads

Download data is not yet available.

Author Biographies

Arjun Baidya, Nil Ratan Sircar Medical College, Kolkata

Department of Endocrinology

Sarita Bajaj, Motilal Nehru Medical College, Allahabad

Endocrinologist, Professor, Department of Medicine

Abdul Hamid Zargar, National Highway Gulshan Nagar Srinagar, Jammu and Kashmir

Endocrinologist, Professor

Diabetes and Endocrine Care

Parminder Singh, Dayanand Medical College and Hospital, Ludhiana, Punjab

Endocrinologist, Professor

Department of Endocrinology

Sambit Das, Apollo Hospital, Bhubaneswar

Endocrinologist

Anand Shankar, Shankar Diabetes Care, Patna

Diabetologist

References

Del Rio C, Malani PN. COVID-19-new insights on a rapidly changing epidemic. JAMA. 2020. https://www.ncbi.nlm.nih.gov/pubmed/32108857. https://doi.org/10.1001/jama.2020.3072.

Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020. https://www.ncbi.nlm.nih.gov/pubmed/32091533.

https://doi.org/10.1001/jama.2020.2648.

Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020;395(10223):507-13. https://www.ncbi.nlm.nih.gov/pubmed/32007143. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7135076. https://doi.org/10.1016/S0140-6736(20)30211-7.

Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult in-patients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet.2020;395(10229):

-62. https://www.ncbi.nlm.nih.gov/pubmed/32171076. https;//doi.org/10.1016/S0140-6736(20)30566-3.

Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med. 2020. https://doi.org/10.1016/S2213-2600(20)30079-5.

Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020. 382:1708-20. https://doi.org/10.1056/NEJMoa2002032.

Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020. https://www.ncbi.nlm.nih.gov/pubmed/32077115. https://doi.org/10.1111/all.14238.

Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: A systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-5. https://www.ncbi.nlm.nih.gov/pubmed/32173574. https://doi.org/10.1016/j.ijid.2020.03.017.

Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020. https://www.ncbi.nlm.nih.gov/pubmed/32125452. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080116. https://doi.org/10.1007/s00134-020-05991-x.

Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020. https://www.ncbi.nlm.nih.gov/pubmed/32167524. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070509 [Available on 2021-03-13]. https://doi.org/10.1001/jamainternmed.2020.0994.

Rasmussen SA, Watson AK, Swerdlow DL. Middle East Respiratory Syndrome (MERS). Microbiol Spectr. 2016;4(3). https://www.ncbi.nlm.nih.gov/pubmed/27337460. https://doi.org/10.1128/microbiolspec.EI10-0020-2016.

Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J Virol. 2020. 94(7).pii:e00127-20. https://www.ncbi.nlm.nih.gov/pubmed/31996437. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081895. https://doi.org/10.1128/JVI.00127-20.

Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020. 382(13):1199-1207. https://www.ncbi.nlm.nih.gov/pubmed/31995857. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7121484. https://doi.org/10.1056/NEJMoa2001316.

Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding, Lancet. 2020;395(10224):565-74. https://www.ncbi.nlm.nih.gov/pubmed/32007145. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159086. https://doi.org/10.1016/S0140-6736(20)30251.

Shen KL, Yang YH. Diagnosis and treatment of 2019 novel coronavirus infection in children: A pressing issue. World J Pediatr. 2020. https://www.ncbi.nlm.nih.gov/pubmed/32026147. https://doi.org/10.1007/s12519-020-00344-6.

Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China. N Engl J Med. 2020;383(8):727-33.https://www.ncbi.nlm.nih.gov/pubmed/31978945. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7092803. https://doi.org/10.1056/NEJMoa2001017.

Hui DS, I Azhar E, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264-6. https://www.ncbi.nlm.nih.gov/pubmed/31953166. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7128332.

https://doi.org/10.1016/j.ijid.2020.01.009.

Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature.2003;426(6965):450-4. https://www.ncbi.nlm.nih.gov/pubmed/14647384. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7095016. https://doi.org/10.1038/nature02145.

Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020;27(3):325-8. https://www.ncbi.nlm.nih.gov/pubmed/32035028. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154514. https://doi.org/10.1016/j.chom.2020.02.001.

Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses. 2020;12(2). pii:E135. https://www.ncbi.nlm.nih.gov/pubmed/31991541. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077245. https://doi.org/10.3390/v12020135.

Simões e Silva AC, Silveira KD, Ferreira A J, Teixeira MM. ACE2, angiotensin-(1–7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169(3):477-92. https://www.ncbi.nlm.nih.gov/pubmed/23488800.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682698. https://doi.org/10.1111/bph.12159.

Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. https://www.ncbi.nlm.nih.gov/pubmed/31986264. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159299. https://doi.org/10.1016/S0140-6736(20)30183-5.

Li Q, Guan P, Wu X, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, N Engl J Med.2020;382:1199-1207. https://doi.org/ 10.1056/NEJMoa2001316.

Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol. 2020;92(4):441–7. https://www.ncbi.nlm.nih.gov/pubmed/31994742. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7167192. https://doi.org/10.1002/jmv.25689.

Carlos WG, Dela Cruz CS, Cao B, Pasnick S, Jamil S. Novel Wuhan (2019-nCoV) coronavirus. Am J Respir Crit Care Med. 2020;201(4):P7-8. https://www.ncbi.nlm.nih.gov/pubmed/32004066. https://doi.org/10.1164/rccm.2014P7.

Ren LL, Wang YM, Wu ZQ, et al. Identification of a novel coronavirus causing severe pneumonia in human: A descriptive study,Chinese Med J (Engl). 2020. https://www.ncbi.nlm.nih.gov/pubmed/32004165. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147275. https://doi.org/10.1097/CM9.0000000000000722.

Lei J, Li J, Li X, Qi X. CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia, Radiology. 2020;295(1):

https://www.ncbi.nlm.nih.gov/pubmed/32003646. https://doi.org/10.1148/radiol.2020200236.

Kulcsar KA, Coleman CM, Beck SE, Frieman MB. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight. 2019;4(20).pii:131774.

https://www.ncbi.nlm.nih.gov/pubmed/31550243. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824443. https://doi.org/10.1172/jci.insight.131774.

Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study. Lancet Infect Dis. 2013;13(9):752–61. https://www.ncbi.nlm.nih.gov/pubmed/23891402. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185445. https://doi.org/10.1016/S1473-3099(13)70204-4.

Lee N, Hui D, Wu A, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003;348(20):1986-94. https://www.ncbi.nlm.nih.gov/pubmed/12682352. https://doi.org/10.1056/NEJMoa030685.

Phan LT, Nguyen TV, Luong QC, et al. Importation and human-to-human transmission of a novel coronavirus in Vietnam. N Engl J Med. 2020;382(9):872-4. https://www.ncbi.nlm.nih.gov/pubmed/31991079. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7121428. https://doi.org/10.1056/NEJMc2001272.

Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109(5):531-8. https://www.ncbi.nlm.nih.gov/pubmed/32161990. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7087935. https://doi.org/10.1007/s00392-020-01626-9.

Mehta P, McAuley DF, Brown M, et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. 2020;395(10229): 1033-4. https://www.ncbi.nlm.nih.gov/pubmed/32192578. https://doi.org/10.1016/S0140-6736(20)30628-0.

Öztoprak F, Javed A. Case fatality rate estimation of COVID-19 for European Countries: Turkey’s current scenario amidst a global pandemic; comparison of outbreaks with European countries. EJMO. 2020;4(2):149–59. https://doi.org/10.14744/ejmo.2020.60998.

Spychalski P, Błażyńska-Spychalska A, Kobiela J. Estimating case fatality rates of COVID-19. Lancet Infect Dis. 2020;S1473-3099(20)30246-2. https://www.ncbi.nlm.nih.gov/pubmed/32243815. https://doi.org/10.1016/S1473-3099(20)30246-2.

Yang JK, Feng Y, Yuan MY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006;23(6):623–8. https://www.ncbi.nlm.nih.gov/pubmed/16759303. https://doi.org/10.1111/j.1464-5491.2006.01861.x.

Ferlita S, Yegiazaryan A, Noori N, et al. Type 2 diabetes mellitus and altered immune system leading to susceptibility to pathogens, especially Mycobacterium Tuberculosis. J Clin Med. 2019;8(12):2219.

https://www.ncbi.nlm.nih.gov/pubmed/31888124. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947370. https://doi.org/10.3390/jcm8122219.

Critchley JA, Carey IM, Harris T, DeWilde S, Hosking FJ, Cook DG. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes Care. 2018;41(10):2127–35. https://www.ncbi.nlm.nih.gov/pubmed/30104296. https://doi.org/10.2337/dc18-0287.

Huttunen R, Syrjänen J. Obesity and the risk and outcome of infection. Int J Obes (Lond). 2013;37(3):333–40. https://www.ncbi.nlm.nih.gov/pubmed/2254677. https://doi.org/10.1038/ijo.2012.62.

Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193-9. https://www.ncbi.nlm.nih.gov/pubmed/19333547. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7088164. https://doi.org/10.1007/s00592-009-0109-4.

Roca-Ho H, Riera, M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int. J. Mol. Sci. 2017;18(3):563. https://www.ncbi.nlm.nih.gov/pubmed/28273875. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5372579. https://doi.org/10.3390/ijms18030563

Alhazzani W, Møller MH, Arabi YM, et al. Surviving sepsis campaign: Guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020;46(5):854-87. https://www.ncbi.nlm.nih.gov/pubmed/32222812. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101866. https://doi.org/10.1007/s00134-020-06022-5.

Ma WX, Ran XW. The management of blood glucose should be emphasized in the treatment of COVID-19. Sichuan Da Xue Xue Bao Yi Xue Ban. 2020;51(2):146-50. https://www.ncbi.nlm.nih.gov/pubmed/32220179. https://doi.org/10.12182/20200360606.

Research Society for the Study of Diabetes in India (RSSDI) Guidance for People with diabetes on COVID-19 for Healthcare Professionals, 2020. https://www.rssdi.in/newwebsite/index.php.

Sommerstein R , Kochen MM , Messerli FH , Gräni C. Coronavirus disease 2019 (COVID-19): do angiotensin-converting enzyme inhibitors/angiotensin receptor blockers have a biphasic effect? J Am Heart Assoc. 2020;9(7):e016509. https://www.ncbi.nlm.nih.gov/pubmed/32233753. https://doi.org/10.1161/JAHA.120.016509.

Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. J Infect. 2020. pii: S0163-4453(20)30165-1. https://www.ncbi.nlm.nih.gov/pubmed/32283152. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194613. https://doi.org/10.1016/j.jinf.2020.03.037.

Tessaro FHG, Ayala TS, Bella LM, Martins JO. Macrophages from a type 1 diabetes mouse model present dysregulated PI3K/AKT, ERK 1/2 AND SAPK/JNK levels. Immunobiology. 2020;225(2):151879.

https://www.ncbi.nlm.nih.gov/pubmed/31812346. https://doi.org/10.1016/j.imbio.2019.11.014.

Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci 2020; 63(3):364-74. https://www.ncbi.nlm.nih.gov/pubmed/32048163.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7088566. https://doi.org/10.1007/s11427-020-1643-8.

Dixon AE, Peters U. The effect of obesity on lung function. Expert Rev Respir Med. 2018;12(9):755–67. https://www.ncbi.nlm.nih.gov/pubmed/30056777. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311385. https://doi.org/10.1080/17476348.2018.1506331.

Geerlings SE, Brouwer EC, Van Kessel KC, Gaastra W, Stolk RP, Hoepelman AI. Cytokine secretion is impaired in women with diabetes mellitus. Eur J Clin Invest. 2000;30(11):995-1001. https://www.ncbi.nlm.nih.gov/pubmed/11114962. https://doi.org/10.1046/j.1365-2362.2000.00745.x.

Wang Z, Chen Z, Zhang L, et al. Status of hypertension in China: Results from the China hypertension survey, 2012-2015. Circulation. 2018;137(22):2344-56. https://www.ncbi.nlm.nih.gov/pubmed/29449338. https://doi.org/10.1161/CIRCULATIONAHA.117.032380.

Lu J, Lu Y, Wang X, et al. Prevalence, awareness, treatment, and control of hypertension in China: Data from 1.7 million adults in a population-based screening study (China PEACE Million Persons Project). Lancet. 2017;390

(10112):2549-58. https://www.ncbi.nlm.nih.gov/pmc/articles/ 29102084.

https://doi.org/10.1016/S0140-6736(17)32478-9.

Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181*2):271-80. https://www.ncbi.nlm.nih.gov/pubmed/32142651.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102627. https://doi.org/10.1016/j.cell.2020.02.052.

Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364-74. https://www.ncbi.nlm.nih.gov/pubmed/32048163. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7088566. https://doi.org/10.1007/s11427-020-1643-8.

Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-9. https://www.ncbi.nlm.nih.gov/pubmed/16007097. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7095783. https://doi.org/10.1038/nm1267.

Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125(Pt A):21–38. https://www.ncbi.nlm.nih.gov/pubmed/28619367. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607101. https://doi.org/10.1016/j.phrs.2017.06.005.

Wenzhong L, Hualan L. COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv. 2020. https://doi.org/10.26434/chemrxiv.11938173.v8

Kawanami D, Matoba K, Takeda Y, et al. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. Int J Mol Sci. 2017;18(5):1083. https://www.ncbi.nlm.nih.gov/pubmed/28524098. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454992. https://doi.org/10.3390/ijms18051083.

Iacobellis G. COVID-19 and diabetes: Can DPP4 inhibition play a role?. Diabetes Res Clin Pract. 2020:108125. https://www.ncbi.nlm.nih.gov/pubmed/32224164. https://doi.org/10.1016/j.diabres.2020.108125.

Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med [Internet]. 2020 [cited 2020 Mar 20]; Available from:

https://linkinghub.elsevier.com/ retrieve/pii/S2213260020301168.

Tripathy D, Daniele G, Fiorentino TV, et al. Pioglitazone improves glucose metabolism and modulates skeletal muscle TIMP-3– TACE dyad in type 2 diabetes mellitus: A randomised, double-blind, placebo-controlled, mechanistic study. Diabetologia 2013;56(10):2153–63. https://www.ncbi.nlm.nih.gov/pubmed/23811853. https://doi.org/10.1007/s00125-013-2976-z.

Pal R, Bhadada SK. Should anti-diabetic medications be reconsidered amid COVID-19 pandemic? Diabetes Res Clin Pract. 2020;163:108146. https://www.ncbi.nlm.nih.gov/pubmed/32283128. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151403. https://doi.org/10.1016/j.diabres.2020.108146.

Salem ESB, Grobe N, Elased KM. Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice. Am J Physiol Renal Physiol. 2014;306(6):F629–39. https://www.ncbi.nlm.nih.gov/pubmed/24452639. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949038. https://doi.org/10.1152/ajprenal.00516.2013.

Kumar A, Prakash AS. Effectiveness and safety of hydroxychloroquine compared to teneligliptin in uncontrolled T2DM patients as add-on therapy. J ASEAN Fed Endocr Soc. 2019;34(1):87-91.

https://doi.org/10.15605/jafes.034.01.13.

Quatraro A, Consoli G, Magno M, et al. Hydroxychloroquine in decompensated, treatment-refractory noninsulin-dependent diabetes mellitus. A new job for an old drug? Ann Intern Med. 1990;112(9):678-81. https://www.ncbi.nlm.nih.gov/pubmed/2110430.

Singh UP, Baidya A, Singla M, et al. Efficacy and safety of substituting teneligliptin with hydroxychloroquine in inadequately controlled type 2 diabetes subjects with combination therapy of teneligliptin, metformin and glimepiride with or without other antidiabetic therapy: The TENE-HYQ SHIFT Study. Clinical Diabetology. 2018;7(5):209–14. https://doi.org/10.5603/DK.2018.0025.

Gupta A. Real-World Clinical Effectiveness and Tolerability of Hydroxychloroquine 400 Mg in Uncontrolled Type 2 Diabetes Subjects who are not Willing to Initiate Insulin Therapy (HYQ-Real-World Study). Curr Diabetes Rev. 2019;15(6):510-519. https://www.ncbi.nlm.nih.gov/pubmed/31713476.

Bajaj S. RSSDI clinical practice recommendation for the management of type 2 diabetes mellitus 2017. Int. J Diabetes Dev Ctries. 2018;38(Suppl 1):1-115. https://www.ncbi.nlm.nih.gov/pubmed/29527102. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5838201. https://doi.org/10.1007/s13410-018-0604-7.

Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID‐19: Results of an open label non‐randomized clinical trial. Int J Antimicrob Agents. 2020;105949. https://www.ncbi.nlm.nih.gov/pubmed/32205204. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102549. https://doi.org/10.1016/j.ijantimicag.2020.105949.

Yao X, Ye F, Zhang M, et al. In vitro Antiviral activity and projection of optimised dosing design of Hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020: pii:ciaa237. https://www.ncbi.nlm.nih.gov/pubmed/32150618. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7108130. https://doi.org/10.1093/cid/ciaa237.

Derwand R, Scholz M. Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win todays battle against COVID-19? Med Hypotheses. 2020;142:109815.

https://www.ncbi.nlm.nih.gov/pubmed/32408070. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202847. https://doi.org/10.1016/j.mehy.2020.109815

National Taskforce on COVID-19 Advisory on the use of hydroxychloroquine for prophylaxis for SARS-CoV-2 infection. Accessed March 23, 2020. https://www.mohfw.gov.in/pdf/AdvisoryontheuseofHydroxychloroquinasprophylaxisforSARSCoV2infection.pdf.

Young C, Lim HS, Chung D, Choi J, Yoon D. Risk evaluation of azithromycin-induced qt prolongation in real-world practice. BioMed Res Int. Vol. 2018, Article ID 1574806. https://doi.org/10.1155/2018/1574806.

McCreary EK, Pogue JM. Coronavirus disease 2019 treatment: A review of early and emerging options. Open Forum Infect Dis. 2020;7(4):ofaa105. https://www.ncbi.nlm.nih.gov/pubmed/32284951. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144823. https://doi.org/10.1093/ofid/ofaa105.

Madsbad A. COVID-19 infection in people with diabetes. https://www.touchendocrinology.com/insight/covid-19-infection-in-peoplewith-diabetes/.

Maahs DM, DeSalvo D, Pyle L, et al. Effect of acetaminophen on CGM glucose in an outpatient setting. Diabetes Care. 2015;38(10):e158‐9. https://www.ncbi.nlm.nih.gov/pubmed/26269199. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876736. https://doi.org/10.2337/dc15-1096.

Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. https://www.ncbi.nlm.nih.gov/pubmed/32171062. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118626. https://doi.org/10.1016/S2213-2600(20)30116-8.

Liu J, Zheng X, Tong Q, et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol. 2020;92(5): 491-4. https://www.ncbi.nlm.nih.gov/pubmed/32056249. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7166760.

https://doi.org/10.1002/jmv.25709.

Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res.20202;30(3):269-71. https://www.ncbi.nlm.nih.gov/pubmed/32020029.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054408. https://doi.org/10.1038/s41422-020-0282-0.

Smith T, Bushek J, Prosser T. COVID-19 drug therapy. Clinical Drug Information. https://www.elsevier.com/__data/assets/pdf_file/0007/988648/COVID-19-Drug-Therapy_Mar-2020.pdf.

Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences. 117. 202004168. https://doi.org/10.1073/pnas.2004168117.

Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity.2020;52(4):583‐9. https://www.ncbi.nlm.nih.gov/pubmed/32259480. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136867. https://doi.org/10.1016/j.immuni.2020.03.007.

Chen WH, Strych U, Hotez PJ, Bottazzi ME. The SARS-CoV-2 vaccine pipeline: An overview. Curr Trop Med Rep. 2020. 1-4. https://www.ncbi.nlm.nih.gov/pubmed/32219057. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094941. https://doi.org/10.1007/s40475-020-00201-6.

Mentz RJ, Bakris GL, Waeber B, et al. The past, present and future of renin-angiotensin aldosterone system inhibition. Int J Cardiol. 2013;167(5):1677‐87. https://www.ncbi.nlm.nih.gov/pubmed/23121914. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145865. https://doi.org/10.1016/j.ijcard.2012.10.007.

Bavishi C, Maddox TM, Messerli FH. Coronavirus Disease 2019 (COVID-19) infection and renin angiotensin system blockers. JAMA Cardiol. 2020. https://www.ncbi.nlm.nih.gov/pubmed/32242890. https://doi.org/10.1001/jamacardio.2020.1282.

Russell B, Moss C, Rigg A, Van Hemelrijck M. COVID-19 and treatment with NSAIDs and corticosteroids: Should we be limiting their use in the clinical setting? Ecancermedicalscience. 2020;14:1023.

https://www.ncbi.nlm.nih.gov/pubmed/32256706. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105332. https://doi.org/10.3332/ecancer.2020.1023.

Published

2020-05-22

How to Cite

Baidya, A., Singh, S. K., Bajaj, S., Zargar, A. H., Singh, P., Das, S., & Shankar, A. (2020). Diabetes and COVID-19: A Review . Journal of the ASEAN Federation of Endocrine Societies, 35(1), 40–48. https://doi.org/10.15605/jafes.035.01.06

Issue

Section

Review Articles

Most read articles by the same author(s)