Relationship between Plasma Adiponectin Level and Corrected QT interval in Smoker and Non-Smoker Adult Male Subjects

Keywords: smoker, adiponectin, QTc

Abstract

Objective. This study determined the relationship between plasma adiponectin level and corrected QT interval (QTc) in smokers and non-smokers.

Methodology. This cross-sectional analytical study was undertaken in 30 smokers and 30 non-smokers. Plasma
adiponectin level was determined by enzyme-linked immunosorbent assay (ELISA). The QT interval was measured by routine 12-lead ECG with Lead II rhythm and QTc was calculated.

Results. Mean plasma adiponectin level was significantly lower in smokers (27.89±15 μg/ml) than that of non-smokers (52.13±21.57μg/ml) (p<0.001). Mean QTc interval was significantly longer in smokers than that of non-smokers (415.37±29.9 versus 395.63±26.13 ms, p<0.01). Higher risk of low adiponectin level (odds ratio [OR],8.1; 95% confidence interval [CI],1.61-40.77) and QTc interval prolongation (OR,6; 95%CI,1.17-30.73) were observed in smokers. There was weak significant negative correlation between plasma adiponectin level and QTc interval in the study population (n=60, r=-0.407, p=0.001). Moreover, low plasma adiponectin level was significantly associated with prolonged QTc interval in the study population (n=60, Fisher's exact p value<0.05). Risk of QTc interval prolongation was 4.3 times higher in subjects with low plasma adiponectin level (OR,4.27; 95% CI,1.05-17.46).

Conclusion. Smokers have greater risk for low plasma adiponectin level and prolonged QTc interval. There is a relationship between plasma adiponectin level and QTc interval.

Downloads

Download data is not yet available.

Author Biographies

Yin Thu Theint, University of Medicine 2

Assistant Lecturer, Department of Physiology

Yangon

Ei Ei Khin, University of Medicine 2

Associate Professor, Department of Physiology

Yangon

Ohnmar Myint Thein, University of Medicine 2

Professor, Department of Physiology

Yangon

Mya Thanda Sein, University of Medicine 2

Professor and Head, Department of Physiology

Yangon

References

Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem.1995;270(45):26746-9. https://www.ncbi.nlm.nih.gov/pubmed/7592907. https://doi.org/10.1074/jbc.270.45.26746.

Arita Y, Kihara S, Ouchi N, et al. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation. 2002;105(24):2893‐8. https://www.ncbi.nlm.nih.gov/pubmed/12070119. https://doi.org/10.1161/01.cir.0000018622.84402.ff.

Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin stimulates production of nitric oxide in vascular

endothelial cells. J Biol Chem. 2003;278(45):45021‐6. https://www.ncbi.nlm.nih.gov/pubmed/12944390. https://doi.org/10.1074/jbc.M307878200.

Shibata R, Sato K, Pimentel DR, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med. 2005;11(10):1096‐103. https://www.ncbi.nlm.nih.gov/pubmed/16155579. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828682. https://doi.org/10.1038/nm1295.

Kumada M, Kihara S, Ouchi N, et al. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation. 2004;109(17):2046‐9. https://www.ncbi.nlm.nih.gov/pubmed/15096450.

https://doi.org/10.1161/01.CIR.0000127953.98131.ED.

Wang L. Protective role of adiponectin in volume overload-induced heart failure. A dissertation for Ph.D. Auburn University, Alabama. December 13, 2014. https://etd.auburn.edu/bitstream/handle/10415/4407/Lili%20Wang%20Dissertation.pdfsequence=2.

Oudit GY, Kassiri Z, Sah R, Ramirez RJ, Zobel C, Backx PH. The molecular physiology of the cardiac transient outward potassium current (I(to)) in normal and diseased myocardium. J Mol Cell Cardiol. 2001;33(5):851‐72. https://www.ncbi.nlm.nih.gov/pubmed/11343410. https://doi.org/10.1006/jmcc.2001.1376.

Yap YG, Camm AJ. Drug induced QT prolongation and torsades de pointes. Heart. 2003;89(11):1363‐72. https://www.ncbi.nlm.nih.gov/pubmed/14594906. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1767957. https://doi.org/10.1136/heart.89.11.1363.

Bazett HC. An analysis of the time relationships of electrocardiograms. Ann Nonivasive Electrocardiol. 2006;2(2). https://doi.org/10.1111/j.1542-474X.1997.tb00325.x.

Burns E. QT interval. http://litfl.com/qt-interval-ecg-library. Accessed February 5, 2018.

Komatsu M, Ohfusa H, Sato Y, et al. Strong inverse correlation between serum adiponectin level and heart rate-corrected QT interval in an apparently healthy population: A suggestion for a direct antiatherogenic effect of adiponectin. Diabetes Care.2004;27(5):1237-8. https://www.ncbi.nlm.nih.gov/pubmed/15111559. https://doi.org/10.2337/diacare.27.5.1237.

Iwashima Y, Katsuya T, Ishikawa K, et al. Association of hypoadiponectinemia with smoking habit in men. Hypertension.2005;45(6):1094‐100. https://www.ncbi.nlm.nih.gov/pubmed/15897361. https://doi.org/10.1161/01.HYP.0000169444.05588.4c.

Takefuji S, Yatsuya H, Tamakoshi K, et al. Smoking status and adiponectin in healthy Japanese men and women. Prev Med.2007;45(6):471‐5. https://www.ncbi.nlm.nih.gov/pubmed/17689602. https://doi.org/10.1016/j.ypmed.2007.07.001.

Sull JW, Kim HJ, Yun JE, Park EJ, Kim G, Jee SH. Serum adiponectin is associated with smoking status in healthy Korean men. Endocr J. 2009;56(1):73‐8. https://www.ncbi.nlm.nih.gov/pubmed/18840926. https://doi.org/10.1507/endocrj.k08e-231.

Tsai JS, Guo FR, Chen SC, et al. Smokers show reduced circulating adiponectin levels and adiponectin mRNA expression in peripheral blood mononuclear cells. Atherosclerosis. 2011;218(1):168‐73. https://www.ncbi.nlm.nih.gov/pubmed/21605866. https://doi.org/10.1016/j.atherosclerosis.2011.04.025.

Rosner B. Hypothesis testing: Two-sample inference. In: Fundamentals of Biostatistics, 7th ed. Cengage Learning.

http://galaxy.ustc.edu.cn:30803/zhangwen/Biostatistics/Fundamentals+of+Biostatistics+8th+edition.pdf.

Fan LH, He Y, Xu W, et al. Adiponectin may be a biomarker of early atherosclerosis of smokers and decreased by nicotine through KATP channel in adipocytes. Nutrition. 2015;31(7-8):955‐8. https://www.ncbi.nlm.nih.gov/pubmed/26059367. https://doi.org/10.1016/j.nut.2015.01.010.

Sharma NK, Jaiswal KK, Meena SR, et al. ECG changes in young healthy smokers: A simple and cost-effective method to assess cardiovascular risk according to pack-years of smoking. J Assoc Physicians India. 2017;65(6):26‐30. https://www.ncbi.nlm.nih.gov/pubmed/28782310.

Fumeron F, Aubert R, Siddiq A, et al. Adiponectin gene polymorphisms and adiponectin levels are independently associated with the development of hyperglycemia during a 3-year period: The epidemiologic data on the insulin resistance syndrome prospective study. Diabetes. 2004;53(4):1150‐7. https://www.ncbi.nlm.nih.gov/pubmed/15047634. https://doi.org/10.2337/diabetes.53.4.1150.

Wu CC, Chang CS, Hsu CC, et al. Elevated plasma adiponectin levels are associated with abnormal corrected QT interval in patients with stable angina. Int Heart J. 2020;61(1):29‐38. https://www.ncbi.nlm.nih.gov/pubmed/31956139. https://doi.org/10.1536/ihj.19-270.

Fan AZ, Paul-Labrador M, Merz CN, Iribarren C, Dwyer JH. Smoking status and common carotid artery intima-media thickness among middle-aged men and women based on ultrasound measurement: A cohort study. BMC Cardiovasc Disord.2006;6:42. https://www.ncbi.nlm.nih.gov/pubmed/17067397. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1634872. https://doi.org/10.1186/1471-2261-6-42

Yasue H, Hirai N, Mizuno Y, et al. Low-grade inflammation, thrombogenicity and atherogenic lipid profile in cigarette smokers. Circ J. 2006;70(1):8-13. https://www.ncbi.nlm.nih.gov/pubmed/16377917. https://doi.org/10.1253/circj.70.8.

Devi MRR, Arvind T, Kumar PS. ECG changes in smokers and non-smokers - a comparative study. J Clin Diagn Res. 2013;7(5):824‐6. https://www.ncbi.nlm.nih.gov/pubmed/23814720. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681047. https://doi.org/10.7860/JCDR/2013/5180.2950.

Benowitz NL. Cigarette smoking and cardiovascular disease: Pathophysiology and implications for treatment. Prog Cardiovasc Dis. 2003;46(1):91‐111. https://www.ncbi.nlm.nih.gov/pubmed/12920702. https://doi.org/10.1016/s0033-0620(03)00087-2.

Andersson K, Arner P. Systemic nicotine stimulates human adipose tissue lipolysis through local cholinergic and catecholaminergic receptors. Int J Obes Relat Metab Disord. 2001;25(8):1225‐32. https://www.ncbi.nlm.nih.gov/pubmed/11477508. https://doi.org/10.1038/sj.ijo.0801654.

Wang Z, Wang D, Wang Y. Cigarette smoking and adipose tissue: The emerging role in progression of atherosclerosis. Mediators Inflamm. 2017;2017:3102737. https://www.ncbi.nlm.nih.gov/pubmed/29445255. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763059. https://doi.org/10.1155/2017/3102737.

Tirosh A, Potashnik R, Bashan N, Rudich A. Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation. J Biol Chem. 1999;274(15):10595‐602. https://www.ncbi.nlm.nih.gov/pubmed/10187855. https://doi.org/10.1074/jbc.274.15.10595.

Bogan JS, Lodish HF. Two compartments for insulin-stimulated exocytosis in 3T3-L1 adipocytes defined by endogenous ACRP30 and GLUT4. J Cell Biol. 1999;146(3):609‐20. https://www.ncbi.nlm.nih.gov/pubmed/10444069. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2150549. https://doi.org/10.1083/jcb.146.3.609.

Hajri T, Tao H, Wattacheril J, Marks-Shulman P, Abumrad NN. Regulation of adiponectin production by insulin: interactions with tumor necrosis factor-α and interleukin-6. Am J Physiol Endocrinol Metab. 2011;300(2):E350‐60. https://www.ncbi.nlm.nih.gov/pubmed/21062957. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280698. https://doi.org/10.1152/ajpendo.00307.2010.

Fasshauer M, Kralisch S, Klier M, et al. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2003;301(4):1045‐50. https://www.ncbi.nlm.nih.gov/pubmed/12589818. https://doi.org/10.1016/s0006-291x(03)00090-1.

Okamoto Y, Arita Y, Nishida M, et al. An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls. Horm Metab Res. 2000;32(2):47‐50. https://www.ncbi.nlm.nih.gov/pubmed/10741683. https://doi.org/10.1055/s-2007-978586.

Miyazaki T, Shimada K, Mokuno H, Daida H. Adipocyte derived plasma protein, adiponectin, is associated with smoking status in patients with coronary artery disease. Heart. 2003;89(6):663. https://www.ncbi.nlm.nih.gov/pubmed/12748229. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1767701. https://doi.org/10.1136/heart.89.6.663.

Thomakos P, Liatis S, Kalopita S, et al. Cigarette smoking is associated with prolongation of the QTc interval duration in patients with type 2 diabetes mellitus. Int J Endocrinol. 2013;2013:329189. https://www.ncbi.nlm.nih.gov/pubmed/23710173. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655597. https://doi.org/10.1155/2013/329189.

Özdemir L, Sökmen E. Effect of habitual cigarette smoking on the index of cardiac electrophysiological balance in apparently healthy individuals. J Electrocardiol. 2020;59:41-44. https://www.ncbi.nlm.nih.gov/pubmed/31958651. https://doi.org/10.1016/j.jelectrocard.2020.01.003.

D'Alessandro A, Boeckelmann I, Hammwhöner M, Goette A. Nicotine, cigarette smoking and cardiac arrhythmia: An overview. Eur J Prev Cardiol. 2012;19(3):297‐305. https://www.ncbi.nlm.nih.gov/pubmed/22779085. https://doi.org/10.1177/1741826711411738.

Wang H, Shi H, Wang Z. Nicotine depresses the functions of multiple cardiac potassium channels. Life Sci. 1999;65(12):PL143‐9. https://www.ncbi.nlm.nih.gov/pubmed/10503950. https://doi.org/10.1016/s0024-3205(99)00370-7.

Wang H, Shi H, Zhang L, et al. Nicotine is a potent blocker of the cardiac A-type K(+) channels. Effects on cloned Kv4.3 channels and native transient outward current. Circulation. 2000;102(10):1165‐71. https://www.ncbi.nlm.nih.gov/pubmed/10973847. https://doi.org/10.1161/01.cir.102.10.1165.

Fernández-Velasco M, Ruiz-Hurtado G, Hurtado O, Moro MA, Delgado C. TNF-alpha downregulates transient outward potassium current in rat ventricular myocytes through iNOS overexpression and oxidant species generation. Am J Physiol Heart Circ Physiol. 2007;293(1):H238‐45. https://www.ncbi.nlm.nih.gov/pubmed/17337591. https://doi.org/10.1152/ajpheart.01122.2006.

Published
2020-10-19
How to Cite
Theint, Y. T., Khin, E. E., Thein, O. M., & Sein, M. T. (2020). Relationship between Plasma Adiponectin Level and Corrected QT interval in Smoker and Non-Smoker Adult Male Subjects. Journal of the ASEAN Federation of Endocrine Societies, 35(2). Retrieved from https://asean-endocrinejournal.org/index.php/JAFES/article/view/861
Section
Original Articles